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Introduction

Human behaviour has long been an object of study for many researchers. Social
network science focuses on the study of interactions between individuals, including
real-life friendships, sexual contacts, scientific paper citations and, more recently,
online interactions. In the last decades, the success of social media has signifi-
cantly increased the volume of online human interactions. This phenomenon has
made available a huge quantity of data concerning human activities, expanding our
knowledge of social dynamics and its underlying mechanisms. The availability of
data from these platforms has enabled researchers to study humans in a wider and
broader way than did with real-life interactions. Indeed, these apps provide wider
datasets recording additional information too, such as the timing or the content of
an interaction, for every user. This allows for larger and more precise studies by
having bigger and more heterogeneous samples. Every platform differs from others
by the services it provides which implies having different types of users and ways of
interacting. A study of a specific app enables one not only to characterize how peo-
ple behave on it but also to compare it with studies on other social media to identify
recurrent patterns. At the same time, when working, for instance, with retweets on
Twitter or messages on WhatsApp, the interactions are characterized by the flow
of information. This allows for the study of phenomena such as information spread
and misinformation.

The interest and main focus of this thesis regards the study of forwarded mes-
sages on Telegram. Telegram is a messaging app which offers users the possibility
to create channels. A channel is a group chat where only admins can post, allowing
to share information quickly to a broad audience. It can be created by any Tele-
gram user and others can subscribe or join. If it is public, then the chat’s content
can be seen on the Web by non Telegram users too. Each channel can have an
associated discussion chat where participants can interact and comment channel’s
posts. Telegram, additionally, offers a high privacy level, which has increased its
use across users. The high level of security that this app ensures and the impunity
it provides to users, has increased the usage across extremists and misinformation
groups. Indeed, in the name of freedom of speech, Telegram does not moderate the
content sent on the app, allowing users to share, in some cases, illegal material too.
Recently, the way of doing of the app has been questioned, culminating with the
arrest of its founder. In the recent years, Telegram has been the object of various
studies for misinformation spreading on the app [5, 29]. Others have focused, in-
stead, on the structure of specific communities on it, such as the UK far-right, as
done in [15]. However, despite its growing popularity, this app has not been studied
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as much as older platforms, such as Twitter or Facebook.

In this thesis we are going to consider forwarded messages as interactions between
chats. Forwards are thought to be correlated with the diffusion of misinformation.
As a result, some social platforms have started to introduce measures to limit it.
On WhatsApp, for instance, you can forward a message to at most 5 users at the
same time. The study of interactions and timings becomes then fundamental in
understanding and preventing this phenomenon. In [12], the authors analyzed data
from WhatsApp to see whether the measure introduced was effective in blocking
the diffusion of misinformation. They discovered that limiting the forwards delays
the propagation of fake news but are unsuccessful in blocking it. In [8], the au-
thors tested different strategies to mitigate disinformation on networks generated
by known models or real ones. Thus, creating a model that reproduces forwards on
Telegram allows, in the future, to study the efficacy of measures to combat disinfor-
mation on the social media. At the same time, the study of forwards allows not only
the development of a model, but to discover also how people behave on these apps.
Many social interactions have been studied through the years, showing consistent
properties, such as heterogeneous number of connections [2], small-world dynamics
[41] and reinforcement of old ties [40]. Some models have been developed to re-
produce specific patterns of the network, an example is the Barabasi-Albert model
which generates scale-free networks. Oftentimes though, classical models such as
this one are not able to fully capture all the properties of a real network, thus a
more specific study of the data and the mechanisms behind the process has to be
performed. Employing network science in social studies provides a structure to ef-
fectively exploit relationships among components, but simplifying the network as
static is myopic, as it does not portray the real on-going process behind the data.
Indeed, the network structure may change over time, showing different properties
depending on the time window. At the same time, temporal aspects can tell us a
lot about humans too. As in the network science framework, humans show consis-
tent patterns in real datasets, where the timing of their interactions is often found
correlated and heterogeneous [21]. To reproduce the heavy tails in timings many
models have been proposed. A famous one is the activity model [34], which is able
to recreate heavy tails in the distribution of inter-event times, but fails to reproduce
correlation. By assuming independence between a user’s actions, it fails to capture
the real mechanism that generated the data. To discover the driving forces of the
studied process, it is necessary to analyze at first the data as a network and then
focus on the temporal aspects.

The thesis is organized into five chapters. Chapter [1| discusses the problem to
face and presents the dataset with some exploratory analyses. Then, in Chapter 2]
methods of temporal network science are introduced and reviewed. In Chapter [3]
the temporal network is analyzed using methods presented in the previous chapter.
In Chapter 4 the models to reproduce Telegram’s data are defined and the results
obtained from simulations are shown. Finally, in Chapter 5| we briefly summarize
the results obtained in the thesis suggesting possible directions for future works.

vi



CHAPTER 1

Problem and dataset overview

The aim of this thesis is to develop a model that can recreate the forwards of mes-
sages between chats of Telegram. The problem is viewed under two perspectives:
structure and timings of interactions between chats. Both aspects are key to recre-
ate such phenomenon and to design accurate simulations. In the future, this model
could be used to study the correlation with misinformation spreading and message
forwards, but not only. Another objective of this study is to gain knowledge re-
garding human behaviour on these apps. For instance, how they interact on this
online world, if they are in contact with chats speaking the same language and if
channels aggregate in communities. Regarding the timing, we will try to discover if
there is correlation between the time at which we forward messages and whether it
is influenced by daily rhythms.

In this first chapter, a brief presentation and analysis of the dataset of interest is
made. The dataset used in this thesis is the so-called ” Pushshift Telegram Dataset”
by Baumgartner et al. [4]. This data has been collected starting from around 250
channels of Telegram. The majority are English-speaking, the main topic of 124
of them is right-wing politics, while the remaining ones are cryptocurrency-related.
All messages sent in these channels, from their creation to the date of the retrieval,
have been collected. Then, using a snowballing procedure, if one of these messages
has been forwarded from a chat that was not already in the dataset, that chat is
added to the list. They continued this procedure until they reached 27801 channels.
The messages are retrieved not only for the channel’s chat itself but also for the
associated other chat, such as the discussion chat. In particular, for the 27801
channels studied, 1860 have a related discussion chat.

The data provided was unstructured, nested JSON data and divided into 2 parts:
channels and messages. Both of them contained additional information, for channels
we had various properties such as whether it was a possible scam, the number of
participants, the creation time, whether it was verified or not, the description, the
presence of a discussion chat and its properties, and much more. For messages, the
provided information was, for instance, the sending date, the type of media attached,
the text, whether it has been forwarded, from who it has been forwarded and many
others.
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1.1 Channel

This subsection focuses on the channel dataset and some exploratory studies of its
features. Given the high number of features provided, a first analysis has been
performed to choose and study the most interesting and relevant ones. So, after
translating the raw data into a data frame, a feature selection was made. To under-
stand the meaning of every property given, the Telegram API documentation [3§]
has been used as a reference. Some properties that were kept were, for instance, the
title of the chat, its identification number, the description, the creation date and
some more. This procedure has generated a reduced dataset with some properties
which are summed up in the following table.

Type Total | Scam | Verified
Channel 27801 4 47
Discussion chat | 1860 0 0

Table 1.1: Statistics of discussion chats and channels: the table shows how many
chats are possible scams and verified.

Focusing on the date parameter, the first chat in the dataset was created on
September 18th, 2015, and the last one on October 2nd, 2019. All the times are
specified with a resolution of one second. Figure provides an idea of the distri-
bution of creation times of the channels and discussion chats. Telegram introduced
channels as a feature for the first time in September 2015 [39], which can explain the
peak in the plot around the first months. Discussion chats, instead, were introduced
in 2019, which again explains the peak in that year. Note that some discussion chats
were born before 2019, this may be because some chats were created and later on
converted into discussions.

5000 A
—e— Channel

Discussion chat
4000

3000 A

2000 A

Number of chats

1000 +

[=]
|

2015-07
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2017-01
2017-07
2018-01
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Figure 1.1: The number of channels (blue) and discussion chats (orange) created
per month. The underlying grid corresponds to a 6 months range.

Another interesting feature to analyze is the number of participants in a channel.
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The minimum is 0 while the maximum is of the order of 10°. The number of
participants varies across a wide range as can be seen in Figure [1.2]
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Figure 1.2: Probability density function of the number of participants in each chan-
nel.

1.2 Message

This subsection focuses on the message dataset and some exploratory studies of its
features. For the aim of this thesis, the main interest is on forwarded messages, which
are going to form the links between the nodes of the network. Out of the totality of
chats with collected messages, 26 537 of them contain forwarded messages from other
chats. Furthermore, the number of chats that have forwarded a message from the
studied chats is actually quite lower, in particular 22 650. In the following parts of the
thesis, the network corresponding to these studied chats is going to be constructed,
so a network of 29661 nodes at most. In this setting, just the connected component
is going to be kept. This choice will be better explained in the next chapter. This
filtering reduces the number of events, i.e. number of forwarded messages, from the
total initial of 17932793 to 7500 509. In the following part of this section, the data
considered is going to be filtered in order to be consistent with respect to the next
chapters.

Looking more in-depth into some features of messages, the date at which mes-
sages are sent is particularly informative. First of all, the first forwarded message of
the filtered dataset was sent on the 19th of September 2015, while the last one on
the 6th of November 2019. Looking at the count of messages per hour of the day in
Figure[1.3] it is immediate to see that the sending date of the message is dominated
by circadian patterns. Weekly patterns does not seem to appear, as can be seen
in Figure [L.4|(a), which is confirmed by investigating different time windows. An
example is shown in panel (b) of Figure [1.4]

Finally, the monthly occurrences of messages have a clear initial increase and final
drop, as can be seen in Figure [I.5] Regarding the initial low values, the first chats,
as mentioned in Section 1.1} were created in mid-September 2015. Consequently, the
messages dataset misses many days of September 2015. In the first months, more
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channels are created, thus the number of forwarded messages slightly increases.
Regarding the final times, the drop is due to the retrieval date of the data, which
started in November. Unlike daily rhythms, there seems to be no yearly pattern.
Overall, an increasing function would have been expected, because, even if in small
part, every month the number of new channels created is positive as seen in Figure
[1.1} Still, a sort of stabilization seems to appear, which can be explained intuitively
by the fact that some channels created in 2015 are not used much in 2018 for
example, so the number of new channels created is roughly equal to the number
of deprecated ones. However, in the end, there is a clear peak around August and
September 2019. This peak can be explained by the introduction in Telegram of

discussion chats [39]. Indeed, many of them automatically forward content from the
main channel, which raises the number of forwards. This is confirmed by the fact

that from June 2019, 66.1% of forwarded messages are sent by discussion chats.

Number of messages per hour

Distribution per hour
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(a)

Figure 1.3: Study of the daily patterns: (a) PMF of messages per hour in the filtered
dataset. (b) Count of messages sent in an arbitrary window. The grid represents 1

day intervals.

1.3 Language

Human relationships are strongly driven by the language of speakers. Clearly, given
a group of people, it is easier for speakers of the same language to bond and interact

For these reasons, assigning each chat to a language will not

than with others.
only allow us to discover which idioms are more present on Telegram, but also to

investigate the existence of language homophily too.

To recognize the language, every text message sent in a chat is analyzed. Addi-
tionally, if present, the description of the chat, the so-called about, is considered too.
All these strings might contain entities so they were cleaned by removing hashtags,
mentions and URLs. To recognize languages, the Python library lingua has
been employed. Then the language of each message is detected where the recogni-
tion is kept if its confidence is at least 0.5. After completing these steps for every
string, the most recognized language across the messages is set to be the language

4
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(a)
Figure 1.4: Study of the weekly patterns: (a) PMF of forwarded messages per day.
The grid represents a one-day range. (b) Count of messages sent in an arbitrary

window. The grid represents 1 week intervals.

of the chat. If no text message is present in a chat, then the language is set to
unknown. In Figure [1.6]it is possible to see the language distribution across chats
and messages, respectively. The latter is meant as follows, a message is considered
of a certain language, for instance Italian, if it has been sent in an Italian channel.
The language distribution across chats is very different from messages, meaning that
chats of some languages, such as Hebrew for instance, are not many, but they are

very active.
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Figure 1.5: PMF of forwarded messages per month. The grid represents a six-
month range. A peak appears corresponding to the introduction of discussion chats

on Telegram.
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Figure 1.6: Distribution of languages across (a) chats and (b) messages.
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CHAPTER 2

Methods

To address the objectives stated in the previous chapter, some background notions
are needed. This chapter contains definitions, properties and observations which can
be used to analyze the Telegram dataset. While the first part concerns general useful
quantities, the following two contain the most important information, regarding,
respectively, network science and time series.

2.1 Statistical methods

In this section, fat-tailed distributions and Bayesian optimization are presented.
These objects are going to be used in the following chapters.

2.1.1 Fat-tailed distribution

In general, we refer to fat-tailed, long-tailed or heavy-tailed distributions, as distri-
butions that at large values decay slower than an exponential one. These shapes
may appear in a variety of real datasets, such as the population of a city or the
intensity of earthquakes [27]. Other quantities, such as the height of people, are
peaked around their means, meaning that the fluctuations of such variables are
possible but limited around that value. In contrast, in fat-tailed distributions, the
sample mean is not representative of the variable’s value, because it varies across a
wider range. The population of cities, for instance, can vary a lot. In particular, it
has a broad tail, meaning that there exists a small but consistent number of cities
with populations much larger than the mean by several orders of magnitude. These
shapes are recurrent in network science too, especially in the form of a power law,
for this reason, a brief introduction is made [1, 3} 9].

Definition 2.1.1. We say that a random variable X follows a power law if its
probability density function has the following shape:

p(z) oc ™7

where 7 is called the exponent. Note that in many real cases, x follows such a form
for x > xpin-
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The definition can be extended to a discrete X and, in this case, the normaliza-
tion constant is the zeta function:
1 1

C— —
C(7=Iwwn) 2::1001*_1%wN)_7

while in the continuous case:

v—1
—7+1

xmm

C:

The parameter v can be estimated via maximum likelihood estimator (MLE) or
minimizing the Kolmogorov-Smirnov distance between the true distribution and
the empirical one, which can be done with the powelaw package [1]. %, can be
estimated in the same way, however, in the majority of cases we have knowledge
regarding its value. Power law distribution is often called scale-free because all
moments of order m > v — 1 diverge. So, if v = 2, already the mean diverges.

2.1.2 Bayesian optimization

Bayesian optimization is a procedure of reinforcement learning to estimate param-
eters when optimizing a function f [7]. It is particularly useful when that function
has no closed form of dependence on those parameters and when its computation is
very costly. It can be used also to minimize functions, simply by considering — f.
Let f be the function to maximize with respect to some parameters x. Initially, f
is computed on a set of random values of x. These points form the starting knowledge
at our disposal Dy = {(x1, f(X1)),- .., (Xar, f(Xar))}. At each step, another value
of x is explored and the corresponding f is observed. Then, the new observed pair
(x4, f(x¢)) is added to D;_;, obtaining at step t Dy = {D; 1, (x¢, f(x¢))}. It is
assumed that f(x) follows a Gaussian process with a certain mean and variance.
Then, the posterior predictive distribution of f(x;41) follows again a normal law:

P(fer1| Dy, %e41) = N(pe(Xe11), 04(Xe11))

When selecting the value of x to test at each step, we want both to explore areas in
which we have little data and to test regions where we expect optimal values. We
can try to achieve both through the information provided by the posterior predictive
distribution. To balance the trade-off between exploitation and exploration, an
acquisition function u which depends on x is introduced. Then, at each step we
select x that maximizes u. Clearly, u should have a simpler form than f. The
acquisition function used in this thesis is called upper confidence bound:

u(x) = () + koy(x)

where p;(x) and o,(x) are, respectively, the posterior mean and standard deviation
of the Gaussian process given the knowledge up to that step, while k is a constant
to be fixed (by default & = 2.576). A high value of u can be achieved both by
high 04(x), which means high uncertainty in that area, and by high pu,(x), obtained
in regions where we expect high values of f. Thus, by maximizing u we favour
both exploitation and exploration. This process can be stopped when the maximum
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observed value of f is stable for some iterations.

2.2 Elements of network science

In this section, some elements of network science are introduced. A network is
constituted by nodes and edges which represent connections. The rise of network
science started in the 90 with the development of theoretical and computational
backgrounds. It became more and more useful through the years to represent com-
plex systems, i.e. systems made by many entities that interact with each other.
Using a network representation enables to study relationships and connections in a
way that other frameworks are not able to. Network science has been successfully
applied to different areas. Some instances are social interactions, such as friendships
or sexual contacts, infrastructural networks, biological ones, such as neural connec-
tions or protein interactions, and information networks, such as citation of papers
and the World Wide Web (WWW). All these fields deal with different topics and
challenges, however, for each of them, the analysis of the interactions between the
entities is fundamental. Applying network science to the network of sexual contact
can, for instance, make us understand which types of structure in the graph enhance
the diffusion of disease and devise prevention measures to limit it. In the following,
an introduction to general concepts of network science is made. Two main references
are used: a book written by Barabési et al. [3] and another book by Coscia [10].
Unless otherwise specified, in this and the following section the main reference is [3].

A network is a graph G = (V, E) where V is the set of vertices or nodes, and
E' is the set of edges or links. It can be undirected or directed respectively if links
are undirected or directed. In the same way, it is unweighted if the links have no
weight associated to them, or equivalently, if they are all associated to a weight 1.
Otherwise, it is called weighted and the weight associated to a link from node ¢ to
J is going to be denoted w;;. If there exists a link between ¢ and j, then they are
said to be connected and it is denoted as ¢ ~ j.

The structure of a network can be completely defined by the adjacency matrix
A where A;; = w;; if there is a link from node 7 to node j with weight w;; and 0
otherwise. If the network is undirected, then A is symmetric. If it is unweighted
then we denote A;; = a;;.

A path between two nodes is a sequence of connected vertices such that, starting
from the first one, it is possible to reach the last one by traversing links. The length
of a path is the number of traversed links. The shortest path between two nodes
is the one with the lowest length, its length is then called the distance between the
two nodes.

Network properties are studied using various measures which allow to identify
certain behaviours. Those measures may differ depending on whether the network
is directed and weighted, but they are defined in similar ways and with the same
goal of identifying a specific behaviour. For this reason, the following section will
be split into 2 subsections.
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o—0
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Figure 2.1: Example of a step of degree-preserving randomization procedure. If the
new connections form a self-loop or a multi-link then the swap is discarded.

2.3 Undirected and unweighted

In this subsection, the undirected and unweighted case is studied. Some networks
are intrinsically undirected, such as Facebook friendships, while other relationships
are instead directed, such as Instagram follows. Even in the last case, it may be
useful to study the network as undirected to, first, gain insights on a simpler case
and, secondly, to see whether new patterns can appear by considering the direction
and weights of the links too.

First of all, let N = |V| be the number of nodes and L = |E| the number of
links, then we say that the network is sparse if L << L4, Where L., = w
which is the maximum number of links that could be present in a network with N
vertices.

Definition 2.3.1. A connected component G¢ of a graph G is a subgraph Go C G
such that from ¢ there is a path to j for every 4, j nodes of G¢.

Definition 2.3.2. The degree of a node 7 is k; = Zjvzl a;j, so the number of nodes
that 7 is connected to. We will denote the average degree as (K).

In many real networks, such as film actors, telephone calls or protein interactions
networks [27], the degree distribution py has shown fat-tailed behaviour, which sug-
gests the existence of a significant number of nodes, the so-called hubs, with a very
large number of connections, while the majority have few.

In some cases, it may be interesting to study the effects of the degree distribution
on some properties of the network. Indeed, a broad-tailed distribution of the degrees
may influence some other network properties. To assess that, those properties are
computed on a null model which keeps fixed only pr and N while changing other
properties by performing a randomization procedure. The null model that will be
used is built starting from the structure of the original network. Then, at every step
two links are picked uniformly at random and the endpoints of those are swapped,
if it does not create any self-loops or multi-links, as in Figure 2.1l Note that the
randomization can be applied both to undirected and directed networks. This pro-
cedure creates then a randomized network with the same degree distribution as the
original one, which allows us to compare whether the degree influences or not other
properties.

To detect and study relevant nodes, the degree is just the first quantity which
can be computed. To address this task, many others were developed.

10
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2.3.1 Degree centrality

There are many different measures to compute the relevance of a node in a network
depending on different factors. If the degree is considered relevant, then the classic
degree centrality is the best choice, on the other hand, if distances are an important
feature to consider, then betweenness or closeness centralities are a better option.
In the following, different definitions of centrality are introduced.

Definition 2.3.3. The degree centrality of a node i is DC(i) = £ which indicates
the fraction of nodes i is connected to. Then, the degree centrality of a network is
defined as

| XN
DC = N Z(Dcmaz - DC(Z))

i=1

where DC\,q = max; DC(3).

Note that DC € [0, 1], in the extremes DC = 0 for a graph in which all nodes
have the same number of connections, while DC' = 1 for a star graph, i.e. a network
in which the only links are the ones that connect a central node to any other one.

Other interesting measures define as central a node based on different charac-
teristics such as distances from other nodes or how central they are in a path that
connects other vertices. While DC' is a local measure, the following ones are more
global since they take into account the whole structure of the graph instead of just
its neighbours.

Definition 2.3.4. The betweenness centrality of a node i is

oGy = 3 )
ki gkl

where gy, is the number of shortest paths from & to [, while gi(i) is the number of
shortest paths from k to [ passing through 1.

This measure is particularly useful in human mobility problems. In that setting,
a node, which is for instance a bus station, is relevant not only based on the number
of transports that can bring people to that place but also on the number of times
we need to pass through that place to reach another one.

Another centrality measure based on shortest paths is the closeness centrality,
which rewards nodes that can reach others in the smallest amount of steps.

Definition 2.3.5. The closeness centrality of a node ¢ is the inverse of the average
shortest path distance to :

N -1

N—1
Zj:l dij

A major drawback of the measures above is the expensive computational cost
[10].

Finally, a different point of view can be to measure the centrality based on the
centrality of the neighbours.

CO(i) =

11
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Definition 2.3.6. Let the centrality of node i be z;, then Ax = Ax for a certain A.

Using this definition
1 1
€Tr; = XZaijxj = X Z €
Jj=1 JEN(3)
where N (i) is the set of neighbours of i. Then, x; is called the eigenvector centrality
of node 1.

2.3.2 Clustering coefficient

In real world networks, a pattern which appears more frequently than in random
graphs is a high clustering of nodes. By this we mean a high number of nodes who
are friend of their friends. Thinking about human relationships it is a tendency
that can be expected and understood. This behaviour can be encapsulated in the
computation of the clustering coefficient, which can be obtained in two different
ways using a local or global coefficient.

The latter exploits the count of triangles in the network, which represents the
connection between friends of a node, over the total number of times that friends of
that node could have been friends, computed as the number of triplets.

Definition 2.3.7. The global clustering coefficient of a network G is defined as

3 X Number of triangles

Ogl<G)

~ Number of connected triplets

where a connected triplet is a set of three vertices 7, j, h such that ¢ ~ j and 7 ~ h.

In the above definition, the factor 3 normalizes the coefficient: there are indeed
3 triplets in a triangle. Even if this measure is able to capture the clustering of the
network, the major drawback stands in its global nature. Having a single value of
clustering per node would enable a better understanding of the behaviour of each
vertex allowing comparisons between different characteristics of single nodes.

The local clustering coefficient is instead defined per node and it computes the
number of friends of a node which are connected themselves over the total amount
of possible connections between them.

Definition 2.3.8. Let ¢ node of a network G, the inter-connectivity of node i is the
number of neighbours of ¢ who are neighbours themselves, so:

1C(i) = {(5,k) € Elj, k € N(i)}]
The clustering coefficient of ¢ is then defined as:

_IC()

(5)

Ci)
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where C'(i) = 0 if k; = 0,1. The clustering coefficient of G is then:

As anticipated many real networks, such as email messages, protein interactions
and Internet [27], have been shown to feature a higher C'(G) than expected in a
randomly wired graph. In particular, C(G) is respectively 0.16, 0.071 and 0.39.
Finally, it is interesting to use this measure to compare the centrality of nodes, via
the degree, to the connectedness among their friends, via C(i).

2.3.3 Distances

Distances play a central role in network analysis. As said before, they can be used
to define central nodes, but also to recognize certain behaviours, such as small-world
property, that will be investigated in this section.

Average shortest path

The average shortest path length (d) is able to capture in how many steps, on
average, starting from a random node, we can reach another one.

Definition 2.3.9. The average shortest path length of a network G is computed as
the average length of the shortest paths between connected nodes, so:

Zi g, invj dij
(d) = N?N —1)

This measure has become famous thanks to the 6 degrees of separation theory
for which every human being is connected to another one via on average only 6 links
[25]. Many real networks not only show a small (d) value but also, as anticipated
in the previous section, a high clustering coefficient, creating a phenomenon called
small-world behaviour. For a network to have such that behaviour means that even
if the total number of nodes is high, every node knows many friends of their friends
and it is able to reach every other node in a small amount of steps. A priori it is
a counterintuitive pattern for very large networks, but it is constantly found in real
situations and it is characterized by large C'(G) and small (d).

Diameter

The diameter of a connected network measures the highest number of steps required
to move from one node to another one.

Definition 2.3.10. The diameter of a network G is d,,, = max;; d;;.

2.3.4 Degree correlation

In a general randomly wired graph, we expect nodes to be linked to others indepen-
dently of their degree. Nevertheless, in many social interactions, a different pattern
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is detected. It is not unusual, indeed, that more popular nodes interact with other
popular ones, while less popular ones tend to bond with each other. This behaviour
can be seen in many human interactions from scientific collaborations to mobile
phone calls [3]. At the same time, the contrary may happen: very central nodes
are linked to less central ones. At first, it may seem very unlikely to observe a pat-
tern like this in human interactions, but let’s consider for instance a network whose
nodes are shops and people, where there is an edge between two vertices if one is
a client of the other. In this graph, nodes with high degrees, which will probably
be shops, are going to be linked with small degree nodes, so clients, rather than to
other highly connected vertices. Another example is the World Wide Web (WWW)
network which shows the same behaviour. Studying how nodes link to each other
based on their degrees is thus going to tell us more about the characteristics and
mechanisms behind the network.

First of all, we call a network neutral if the number of connections between nodes
of degree k and k' coincides with what we expect by a randomly wired network, for
every k and k’. If we assume that each node chooses randomly its connections,
the probability of two nodes with degrees k and k&’ to be linked to each other is
Drkr = %. If pi. 1 of a network deviates from the one of a random graph, then we say
that there is a degree correlation of some type. A network is called assortative when
hubs tend to connect to each other and avoid unpopular nodes, while unpopular
nodes tend to connect to each other. Finally, a network is called disassortative if
popular nodes avoid each other to connect to unpopular ones.

Recalling the computations of [3], we can introduce the degree correlation mea-
sures.

Degree correlation matrix

Let G an undirected network, p; be the distribution of the degrees and consider every
undirected link (7, j) as a double directed link ¢ — j and j — i. Let E = {e;;};; be
the degree correlation matrix, where e;; is the probability that selecting randomly a
link it has as source a node with degree ¢ and as target a node with degree j. Note
that in an undirected network e;; = e;;. In real cases, it is computed as the number
of times a node with degree ¢ has a neighbour with degree j normalized with 2L.
Let g, = Zj exj, then

# connections between nodes with degree k£ and j 1

- 2L 2L
where the first term is the number of nodes with degree k£ and the second one is the
total number of connections each node of degree k has. Then ¢, can be written as:

kaﬁ
(K)

where (K) is the average degree. This quantity can be interpreted as the probability
of randomly selecting a link with source a node of degree k. Since F is symmetric in
the undirected case, the sum of row k is equal to the sum of column k. This implies
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Figure 2.2: Example of a simple network. The colours correspond to different degrees
of the nodes.

that ¢, is also the probability that selecting a random link the target is a node with
degree k. Then in a neutral network, we have e;; = ¢;q;, which is expected from
random graphs.

Note that the matrix £ does not contain actual correlation coefficients, nonethe-
less, since in the literature it is known under that name, the same terminology is
adopted in this thesis.

This matrix can be used as a visualization tool for correlation, however, it
presents some drawbacks. First of all, it is not straightforward to extract mean-
ingful information by visually inspecting the matrix, especially for real networks
where we may have some variability and a wide range of degrees which generates
a matrix with large size. Moreover, it is difficult to compare networks with dif-
ferent correlations because it is not possible to understand the magnitude of such
correlations.

Degree correlation function

To overcome the limitations of the matrix inspection, we can compute degree corre-
lation based on the average degree of the neighbours of a node with a certain degree.
In particular, the degree correlation function is defined as

ko (k) = > K P(K|k)

where P(k'|k) is the conditional probability that a node with degree k is connected
to a node with degree k’. Thus, k,,(k) is the average degree of the neighbours of
nodes with degree k. To make this definition clearer, k,, (k) of the network in Figure
2.2 is computed. Nodes i and j both have degree 3, so

1 3 2
E (3)=1--42.24+3.2
where the first term accounts for the unique 1-degree connection, the second term
accounts for links with 2-degree nodes which have 3 links with ¢, 7. The last part
considers 3-degree nodes where we have to consider twice the link (i, 7): the idea is
that 7 is connected to a 3-degree node once and the same hold for j.
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In a neutral network, we have:

Pk K , /
R

= gk’

So then: y <K2>
! ) R D
fn() = S K = SR = )
% %

For a neutral network, we then expect a constant degree correlation function. In-
stead, in an assortative one, nodes with similar degrees connect with each other,
leading to an increasing degree correlation function. With the same reasoning, for
a disassortative network, we have a decreasing Ky, (k).

However, it is not possible to draw immediate conclusions just by looking at
the plot of ky,, (k). Indeed some networks may show disassortative behaviour while
having an underlying assortative or neutral pattern. For instance, the presence of a
scale-free degree distribution implies that there is a small number of nodes with a
high degree and many with a much lower one. Consequently, hubs cannot link with
many other hubs simply due to the small presence of nodes with such a high degree.
Since this limit, which is intrinsic to the structure of the graph, makes the network
appear as disassortative, this phenomenon is called structural disassortativity. In
particular this problem emerges when k is bigger than a threshold called k. As
shown in [3], the threshold is k, oc ((K)N)'/2. Still, if data shows a disassortative
behaviour, it is not certain, even if we are in the structural regime, that the pattern
is induced simply by the shape of the degree distribution. To check this, we can
simply run a degree-preserving randomization procedure that maintains the number
of nodes and the degree distribution of the real network unchanged. This procedure
will instead destroy every type of correlation between degrees. Visualizing the degree
correlation function of the randomized network, we will then be able to see whether
the decrease in the function is caused by the fat tail of the degree distribution or
not. Indeed, if k,, (k) of the randomized does not show any decrease, then we can
conclude that the disassortativity is not structural, otherwise, it is.

Correlation coefficients

It is possible to characterize the correlation of degrees with a single number. There
are two ways to define a coefficient for correlation, the first is called Pearson degree
correlation coefficient, as introduced in [26] by Newman, while the second one is
based on Spearman correlation.

Definition 2.3.11. The Pearson degree correlation coefficient is defined as:
_x— Jk(ejr — giar)
r=> 2
4k

where 02 = Y, k2qr — >, qu]2.

r is thus simply the Pearson coefficient between the degrees found at the end of
the same link. Recall that —1 <7 < 1 and if |r| = 1 then we have linear correlation.
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Thus, in this setting, a high absolute value of r indicates that the degree at the
end of a link linearly depends on the degree at the other extreme. The sign of r
indicates the sign of the slope of the linear fit, suggesting in this case assortativity
or disassortativity.

If instead of studying linear dependence we want to focus on monotonic depen-
dence, then the Spearman rank coefficient is able to measure monotonic correlations
between variables.

Definition 2.3.12. The Spearman rank correlation coefficient is defined as

_ Cov(R(K), R(K"))
\/Var(R(K))Var(R(K’))

= TR(K),R(K")

s

where R(K) and R(K") are the ranked samples of K and K’ degrees at the end of
a link. Thus, it is the Pearson coefficient of the ranked random variables.

In this case, if |rs| is close to 1 then K’ depends monotonically on K, again a
positive (negative) sign suggests increasing (decreasing) monotonicity, respectively.

Coefficients are a quick and immediate way to get an idea of the correlation in
a network. However, this immediateness is also a drawback in terms of reliability.
The Spearman rank is detecting just monotonicity, which is deeply connected to
the behaviour we want to detect, but at the same time, a straight line with a
small negative slope value would be considered as neutral behaviour from a network
perspective, while r, = —1. At the same time, r suffers from some criticality. It is
indeed a measure regarding linear dependence, thus if data is clearly assortative but
can be poorly fitted with a straight line, r is going to be small. Finally, r, and r are
both coefficients that sum up the behaviour of many nodes, thus they can be overly
impacted by outliers. For these reasons, the degree correlation function provides a
better option for the study of correlations since it allows for a broader analysis on
top of which r and r, can be considered too.

2.3.5 Characteristics correlation

Interactions between nodes can be influenced not only by their degree but by some
other characteristics too. Every vertex may have a different attribute which can be
categorical or not. For instance, every node can represent a human which can be
female or male. It may be interesting to study the presence of correlation between
the characteristic of neighbours to detect a particular behaviour of the dataset, which
in this example would be how different genders interact with each other. We are
going to focus just on categorical attributes because others can be easily analyzed
using the degree correlation measures.

First of all, consider an attribute for every node and let m;; be the total number
of contacts between nodes of category i and j, so

mi =Y _ ay - 6(Attribute(k) = i, Attribute(l) = j)

k<l

Note that M = {m,;},; is symmetric since m;; = my;.
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This matrix encapsulates the correlation between the chosen characteristic by
counting how many links are present between different categories. Clearly, this
count is not so informative since it is not normalized. Indeed a common attribute
will have high values in all entries simply because there are more of those nodes
with that characteristic available, thus, probably, they will have a higher number of
connections with respect to underrepresented ones.

To solve this issue, the matrix M* is introduced. M™ is obtained from M as
follows:

% Qmij
my; =
Dok ik + g M
In this way, M* is not only considering correlations between attribute values but
also accounting for the fact that it may be caused by the high or low presence of
one of them. By plotting M*, it will then be possible to inspect its values and if the
diagonal terms are bigger than the other entries, then an assortative behaviour for
that attribute is detected.

Finally, as done for the degree, it is possible to sum up the results by computing
the assortativity coefficient. Historically, the coefficient is defined similarly to the
degree case, both presented in the paper by Newman [26]. Consider £ = {e;;};;
and ¢; as defined in Subsection [2.3.4]

Definition 2.3.13. The feature assortativity coefficient is defined as:

diti— 2 ;4 Tr(E) — sum(E?)
rp = —
' 1= Gt 1 — sum(E?)

where sum(FE?) is the sum of all elements of the matrix E?.
Some remarks on the above definition can be done:

e The second equality indeed holds: recall that [E?];; = Y, eirex;, then:

Z[EZ]U = Z g Cik€rj = ; Z €ikCk;j

e Apart from extreme cases, this formula is always well defined. Let > sery <1
for every k, so assume that the sum of every row is less than 1. This hypothesis
is not restrictive from an application point of view: if it does not hold for some
row k' then every other row has all entries equal to 0, which corresponds to
categories different than &’ being not active. Clearly, it would not hold also for
matrices with just 1 row, which again does not make sense for the scope of this
formula. With this assumption is now possible to prove that the denominator
is always different than 0:

S =Y ewer =3 Y e (Z ) Y ep=t
,J .5 k k % J ki
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Depending on the behaviour of the nodes, r;, has different values:
e For perfectly assortative mixing £ is diagonal and ) . e; = 1, then r; = 1.
e For random mixing e;; = ¢;q;, implying r;, = 0.

e Under a perfectly disassortative mixing, meaning there exists no link between
nodes with the same attribute, then ) e; = 0, thus

i Z qiq;
min __ 1 c _17 0
" 1 - ZZ qiq; [ )

The idea behind this coefficient is to consider an overall view of assortativity in
the network. In this way, 7, will be high if over-represented attributes in the dataset
are assortative because in the computation every vertex has the same weight. From
the network perspective, it is reasonable to assume so. Otherwise, assigning the
same weight to every feature’s value rather than to every node, under-represented
categories would have too much influence. For instance, consider a network with
3 groups where the first 2 are made of many nodes while the 3rd only contains 2
vertices. If the first 2 groups are disassortative, while the third one has the opposite
behaviour, then r; is going to define the network as disassortative, while other
measures such as the one defined by Gupta et al. in [16] will detect the assortativity
of the last group.

As said, to analyze the overall behaviour of the network it is correct to assign
to each node the same weight. At the same time, to study the behaviour of each
attribute is better to proceed as done above for the mixing matrix.

2.3.6 Communities

This section will face the problem of community detection, following the work of
Peixoto [31], discussing the possible algorithms to use. Community detection is an
important task in network science. In some cases, we may need to divide nodes into
groups to maximize or minimize a function, which can happen for instance with
technological networks. There the objective may be to reduce space or energy by
placing and grouping certain vertices. In social or biological networks, instead, it
may be interesting to identify communities who collaborate and work together, to
understand better the habits of the components. For instance, consider the network
of contacts where there is a disease spreading across people, in this case, recognizing
the communities is key to understand the diffusion of the virus and prevent it. In
these cases, discovering these structures can tell a lot about the behaviour of the
nodes and on the process behind the creation of the network itself.

Given the importance of this task, many methods to address it have been devel-
oped. They follow either a descriptive or an inferential approach. The first detects
groups based on descriptive quantities of the network rather than finding an expla-
nation behind the formation of these communities. On the other hand, the latter
does exactly the opposite, starting from a generative model to explain the emer-
gence of these groups. While the majority of algorithms for community detection
are descriptive they should be used just in specific situations. In particular, they are
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thought to be used when the aim is to find a partition of the network to optimize
some tasks, rather than find communities themselves. Applying such optimization
algorithms outside these cases presents various drawbacks. First of all, the idea
behind descriptive methods is to maximize a function and a usual common choice
is modularity. The modularity of a network with adjacency matrix A is:

1 kik;
Q(A,b) = o7 Z (A.j _ ﬁ) Sty b,
17.7

where b = (by,...,by) indicates the node’s community, k; is the degree of node i
and L is the number of edges of the network. This measure compares the existence
of an edge in the real network GG to the probability that such that edge exists in a
null model. The underlying assumption of these algorithms is that a partition of a
network is significant if the occurrence of links between vertices of the same group is
higher than what we would expect with a random null model without communities.
The partition chosen is then the one that maximizes @), so:

bimaz = argmax,Q(A, b)

This method is prone to overfitting, being able to recognize the presence of
communities also in fully random null models. This happens because it does not
consider the deviation from the random case in a proper statistical way. Indeed the
formula of (), which should compute that deviation, ignores the maximization step.
Consider a randomly wired network, varying b, the distribution of Q(A, b) is expected
to be centered around 0. Consequently, there might exist a b with a high value of
(@, but the majority of the partitions will have ) close to 0. Using modularity
maximization, b, is chosen as the partition with highest @), ignoring the fact
that for the vast majority of b, no clear community is detected. This will cause
community recognition even in random null models, clearly overfitting the data. At
the same time, due to a resolution limit, it may underfit data. Indeed it cannot find
more than v/2L communities in a connected network. Furthermore, many networks
present a high modularity plateau, leading to a difficult choice among partitions
which share the same high value of ). It also tends to find groups of similar sizes,
specifically with the same sum of degrees.

Since descriptive methods present all these limitations, an inferential approach

may be preferred. First of all, Stochastic Block Model (SBM) inference will be
introduced, to then deepen the actual method used for the recognition.

Stochastic Block Model

A stochastic block model (SBM) [30] is a generative model able to create a network
from nodes partitioned into B groups. Let b = (by,...,by) where b; € {1,..., B}
represents the block membership of node 7, which are considered as iid random vari-
ables with a certain distribution. Consider the matrix m where 7, is the probability
that there exists a link between nodes of community r and s. Then, in a simple
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graph where A;; € {0,1} we assume:
Ajjlm, b~ Be(my,)

which implies:
p(A|7T7 b) X H ﬂ-li;)]] (1 - ﬂ-bib]‘)l_Aij
1<J

Note that it can be generalized to non-simple graphs where A;; € N by considering e
instead of w, where e, is the actual number of links between groups r and s. It can
be extended to directed networks too by allowing e to be asymmetric. Due to the
different nature of the network, in this case, the placement of the links is modelled
as a geometric distribution.

To detect communities, the goal is now to find the partition b which has gen-
erated the empirical network A under the assumption that it was generated by an
SBM. Thus, the ultimate goal is to find p(b|A) and in particular b that maximizes
this posterior probability. This can be done via different approaches in a Bayesian
framework after choosing the priors.

It is possible to develop a hierarchical procedure [32] by acknowledging that
communities themselves can be seen as nodes of a multigraph where e, is the number
of edges between nodes r and s. This multigraph can be considered as built from
an SBM too, and proceeding recursively we end up with a final model with only one
block. This approach provides different level of resolution with respect to the one
level approach.

2.3.7 Graph models

Many network models were developed to recreate what has been observed in real
datasets. In this section two famous ones are presented: Erdés-Renyi and Barabasi-
Albert. To show the different characteristics of graphs generated by these models,
the values of many of the measures just presented are given [3]. These models can
then be used as a benchmark to compare real networks to them.

Erdés-Renyi model

Many models for static networks have been developed through the years. The oldest
and easiest one is the Erdds-Renyi model.

Definition 2.3.14. Given N, the number of vertices, and p a probability, then
Erdés-Renyi model generates a network G with N vertices where at each step two
random nodes 7, j are connected with probability p. This procedure is repeated for
each pair. This graph is also called random network or random graph.

The degree follows a binomial distribution :
Pk ~ Bi(p, N — 1)
which implies an average degree of (K) = p(N — 1).
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The local clustering coefficient is independent on the node degree since C'(i) = p
- oy K
for every i, then clearly C(G) = p = 5.
In a random graph, the average number of nodes at distance d should be ap-
proximately (K)?, then the expected number of vertices at distance at most d from

a random node is:

Kyt —1
Nd)~1+(K)+ -+ (K) = <—
(@) % 1K)+ () = S
where N(d) is limited by the total number of nodes in the network. Thus, letting
d,, be the diameter it should hold N(d,,) ~ N. Then, assuming (/) >> 1, we have:

dn a ~ N
(K)™ ~ N = d,~ (K]
In many real networks, however, this formula fits better (d) rather than d,, because
d,, is influenced by few long paths, while (d) is an average over all couples of vertices.
In both cases, this equation indicates a logarithmic dependence between (d) or d,,
and the size of the network N, which is seen as small world behaviour regarding
distances.

Being a random model, Erdds-Renyi networks are neutral and present no instance
of communities.

Barabasi-Albert model

From the necessity of explaining the presence of fat-tailed distributions of the degree
in real world networks, the Barabasi-Albert model was developed.

Definition 2.3.15. The Barabasi-Albert model is defined as follows: start with a
network of mg nodes where each of them has at least one link. Then at every time
step a node with m edges is added. The probability that one of these links connects
to an already existent node ¢ is:

p(i) = Sk

This mechanism is known as preferential attachment (PA) for which popular nodes
are going to be more popular having a higher probability of being chosen for a
connection by new vertices.

After t steps, the network is made by t+mg nodes and mg-+tm links. It is possible
to prove that this model generates networks with power-law degree distribution of
exponent 3.

The diameter d,,, scales as
In N

Inln N

and (d) has the same scaling for large N. The average clustering coefficient C(G)
scales as

d,y, X

(In N)?

C(G) x N
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and assuming k; to be large, C(7) is independent on k; itself for every i.
Again, since nodes are connected just based on PA, then this network is neutral
and no communities are expected to be found using SBM.

2.4 Directed and weighted

This section will provide all the instruments to carry out the same analyses as
before but for directed and weighted networks. Many measures are adapted from
the undirected case, while for others new quantities are introduced.

Definition 2.4.1. Let G be a directed graph, then:

e Ggo C G is said to be a strongly connected component of G if for every 1, j
nodes of Gg¢ there exists a directed path from ¢ to j;

e Gye C G is said to be a weakly connected component of G if for every i, j
nodes of Gy ¢ there exists an undirected path from 7 to j.

Note that weakly connected components coincide with the connected components
of G as undirected.

2.4.1 Strength

The natural adaptations of degree for directed and weighted networks are the in and
out-strengths.

Definition 2.4.2. Let ¢ node of a network G, the in and out-strength of ¢ are
SU=) w7 =) wy
J J

where w;; is the weight of the link (4, 7). If w;; = 1 for every 4, j, then the in and
out-strength are called in and out-degree respectively.

2.4.2 PageRank

Not many centrality measures can be generalized to directed weighted networks, and
when it is possible they do not necessarily exploit these additional characteristics in
the best way. Just thinking about distance-based centrality measures, they can be
adapted easily by considering the length of the shortest directed path between two
nodes. However, many real graphs have multiple strongly connected components.
This implies that for many ¢, j there is no path from i to j, so d;; cannot be computed.
Thus, by convention, many nodes have, for instance, a closeness or betweenness
centrality value of 0.

A famous and common centrality measure that was developed especially for
directed networks (but can be extended to weights) is the PageRank, which was
introduced for webpages to detect the more relevant ones. The idea behind it is to
consider as more central, pages on which a user has more probability of ending up by
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following the links across other pages. This translates into a discrete-time random
walk on the directed network. For the theoretical background, the reference is [6],
while for the PageRank results, we refer to [24].

Definition 2.4.3. Consider a stochastic process { X; }1eny with set of states A. {X;}
is a Markov chain if it satisfies the Markov property:

P(Xt, 111X, - Xyy) = P(Xi, 411X,
for every tg <t; < - - <tpi1.

Let P(Xi11 = j| X, = i) = Tj;(t), then the Markov chain is time homogeneous if
T;;(t) = T;; for every t. The matrix T' = {T;},; is called transition matrix. Given
an initial distribution on the states Xy ~ p(0) where p;(0) = P(Xo = @), define p;(t)
as the probability that the chain, at time ¢, is in state i:

Definition 2.4.4. A state of the Markov chain 7 € A is called:
e transient: if the probability of first return to ¢ starting from i is p; < 1.

e recurrent: if the probability of first return to ¢ starting from ¢ is p; = 1. If
the average time of the first return is finite then the state is called positive
recurrent, otherwise it is called null recurrent.

e absorbing: if T;; = 1.

Let B C A be a set of states, if, for every i, j € B, 7 leads to j then B is said to be
irreducible. The Markov chain is irreducible when the set of all states is irreducible.

Definition 2.4.5. A probability distribution 7 on the states is said to be invariant
or stationary with respect to the transition probability matrix T if 7 = «'T.
It is called ergodic if for any initial distribution on the states (p;(0));, it holds

limy o0 pi(t) = m(2).

Theorem 2.4.6. The following results regarding a stationary distribution can be
proved.

o [f there is a finite number of states, then there exists at least one invariant
distribution

o An irreducible Markov chain admits a unique stationary distribution if and
only if all the states are positive recurrent.

Definition 2.4.7. A Markov chain is said to be regular if there exists ¢ > 1 such
that p(t,7,7) > 0 for every state i, 7. Equivalently, there exists ¢ > 1 such that all
entries of T are positive.

Note that a regular Markov chain is irreducible and positive recurrent.
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Theorem 2.4.8. Consider a reqular Markov chain and 7 the unique invariant dis-
tribution. Then m is ergodic.

Now, it is possible to introduce the Markov chain that will be used to compute
the PageRank as done in [24]. Consider a random walker in discrete time, at each
step, the walker at node i € {1,..., N} can jump to one of the out-neighbours of i
according to the transition probability

Lij = 2ou
which defines the transition matrix 7' = {T;;};;. If i has no out-neighbours then
T;i = 1. The chain is time-homogeneous since T;; does not depend on time. The
probability that the walker at time ¢ + 1 is in j is given by

pi(t+1) = sz'(t)Tz’j

Then the idea is to define the PageRank as the unique solution of this equation
independent on the choice of (p;(0));, so as the ergodic distribution of the chain. In
general, there not exist a unique stationary distribution. In real graphs, the number
of states is finite, thus at least one exists, however, since it is likely to have more
absorbing states, then it is not unique. For instance, consider the simple network

A+« B—= C

then Tgy = The = % and Tya = Toc = 1, while the other entries are 0. In this
case, both (1,0,0) and (0,0, 1) are stationary distributions, and there not exists an
ergodic one. Clearly, every strongly connected component of the network forms an
irreducible class of states, but the chain itself is not irreducible.

To avoid this problem, some tricks are introduced to transform the Markov chain
as regular. One of these methods is to introduce teleportation regulated by a rate
a:

pi(t+1) = azpi(t)Tij + (1 —a)u;

where u; represents the probability of the walker going to 7 when it teleports and
1 — « is the probability of teleportation. If u; # 0 for every ¢ and 0 < o < 1, then
from every node it is possible to reach another one at every step, so the modified
Markov chain is regular. This ensures the existence of a unique ergodic stationary
distribution p*, which is the PageRank of the network . This measure defines
a node i as relevant if it can be reached via many links and if the sources of the
incoming edges are important vertices with a small out-degree. The choice of o will
affect the computations: a value closer to 0 will fasten the convergence but reduce
the effect of the true underlying network. Thus, a value closer to 1 is usually picked,
which reduces the effect of teleportation but still transforms the chain as regular.
The common choices are o« = 0.85 and u; = % for every 1.

The generalization to weights is trivial: if an edge from ¢ to j has weight w;;
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then the probability of moving from 7 to j is

wij

B >k Wik

T;

2.4.3 Clustering coefficient

In the undirected case, the clustering coefficient is able to draw a picture of the
closest relationship between a node and its friends. The basic structures that this
measure considers are triplets and triangles, however, in the directed case, more
triangle configurations, in total 8, need to be considered to study the interactions
between a node and its neighbours. Furthermore, taking into account the weights
of the links enables us to weigh the strength of a relation, thus the definition of
this coefficient needs an additional adjustment. The introduction of this modified
clustering coefficient refers to the computations made by Fagiolo in [11].

First of all, note that the clustering coefficient for a binary undirected network
without self-loops can be rewritten in the following way:

Cli) = 5 2t Doht (i) %id Gin g _ (A%
thi(k; — 1) ki(k; — 1)

where (A3); is the ii entry of A3.

When generalizing it to a weighted undirected network, a higher weight is con-
sidered as a hint of a stronger relationship between two nodes. To account for
weights, every weight w;; is normalized by w,qe = max; ; wyj, so w;; = wf:i - and the
geometric mean is used as follows.

Definition 2.4.9. Let G, be a weighted undirected network with adjacency matrix
W, the clustering coefficient of a node 7 is defined as follows:

1 ~1/3~1/3~1/3 ~ [1/3}
2 2jzi 2angligy Wi Win Win _ (W)

Thi(k; — 1) ki(k; — 1)

Cu (Z) =

where W = {g}/ "1 is the matrix obtained from W by taking the k-th root of

ij
each entry and k; is the number of connections of node .

If G, is not weighted then C,, (i) = C(i). Note that it accounts for the weight of
all links forming the triangle and it is invariant to weight permutation in a triangle.

Now, we extend the definition of C'(7) to the direct case and finally, we are going
to merge the two generalizations to obtain the measure that will be used. First of
all, we can introduce some notation:

o k?n/out

: is the in/out-degree of node i.

o ot = k" + k2 is the total degree of node 1.
e The number of bilateral edges between ¢ and its neighbours, so the total count
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of vertices j such that there is an edge from 7 to j and vice versa:

k;_} - Z 1wij7é01wjﬁ50
J#i

The first extension that can be made is to consider all possible directed triangles
formed by each node regardless of the directions of their links. Each product a;;a;na;p
is related to one specific triangle among the 8 possible combinations.

Definition 2.4.10. Given a directed network G, the clustering coefficient of i is
defined as the ratio between all directed triangles formed around i, called tP, and
the number of all possible triangles that i could have had, called T}":

: tP
Cd(l) = sz
It is possible to write this ratio as:
Culi) = 3 2 Donging (@i + @) (@in + ani)(ajn + an) (A+ A"
‘ KT — 1) — 2k 2R (K — 1) — 287

Remark 2.4.11. The equivalence above actually holds, indeed

TP = o (K = 1) - 267

)

Node % can be connected with at most fOt(kEOt_ ) pairs of neighbours. With each

couple, ¢ can create up to 2 triangles, since the edge between the couple can be
oriented in 2 ways. This computation actually counts as different nodes all the ver-
tices 5 with bilateral edges with ¢. It is correct to do so because one time they are
counted as in-neighbour of 7 and the second time as out-neighbour and having a dif-
ferent direction on that link, they can generate different triangles with other nodes.
However, this number counts also false triangles formed by ¢, j as in-neighbour of
¢ and j as out-neighbour of ¢, which clearly are not possible. For each of these, we
have falsely counted 2 triangles, so we need to subtract 2k;” to solve the issue.

Note that if A is symmetric, the measure reduces to the undirected case having
Cq(i) = C(3).

Merging the two extensions presented above, the measure for the directed weighted
case can be defined as follows.

Definition 2.4.12. Let G, be a directed weighted network, then the clustering
coefficient of ¢ is given by:

N e (U
Caw(i) = TDW — 2(klot (Kot — 1) — 2k2)

If the network is unweighted, then Cy, (i) = Cy(i). If W is symmetric then
Caw(t) = Cy(1).
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In general, we expect the clustering coefficient of the weighted directed network
to be lower than in the undirected case, since it computes the number of triangles
present over all possible combinations.

2.4.4 Distances

The diameter or the average shortest path length for the directed case can be ob-
tained easily from the undirected one, presented in Subsection[2.3.3] Nonetheless, as
explained in Subsection [2.4.2 we expect to have more than one strongly connected
component. Thus, it is not possible to go from every node to another one with a
path, making impossible to compute d,,, and (d).

2.4.5 Strength correlation

Studying the correlation of the degree of neighbours can help us study how nodes
relate to each other depending on their popularity. As explained for the undirected
case in Subsection [2.3.4] on some occasions we may expect a certain pattern to
appear. Considering the direction and the weights, the study has to be generalized
to relations between in and out-strength.

Strength correlation function

The analyses will be the same as done before but divided for correlation between
out-strength and out-strength, out and in, in and out, in and in. Thus, we will
compute now 4 strength correlation functions in the same way as before where, for
instance, for the out-in case we have:

koi(k) = K P(K|k)

where now k represents the out-strength of node and &’ the in-strength of its out-
neighbours. For every property of the source node, the function counts the average
property of the target which is an out-neighbour of the source. Consider, for in-
stance, the following simple network:

A— B

Then, k;(0) = 1 while k; cannot be computed on 1 because B has in-degree 1, but
has no out-neighbour.

Correlation coefficients

As done before in Subsection [2.3.4] for every combination, we can compute the
Spearman coefficient or the Pearson coefficient by considering strength instead of
the degree and out-neighbours instead of neighbours. Note that in this setting the
sum of row k of F is different than the sum of column k, since E is asymmetric.
Then, in this setting, in a neutral network we expect e;; = (3, ei) (D, €xj)-
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2.4.6 Characteristics correlation

The study of relations among characteristics of the nodes can be done in the directed
and weighted case too with just a few adjustments. Consider as in Subsection [2.3.5]
the matrix M = {m;;}:; where m;; is the total number of links from a node with
feature i to nodes with feature j (the sum of the weights of the links).

The normalization, similarly to before, can be made in the following way: each
entry is divided by the number of out-links of nodes with feature i plus the number
of in-links of nodes with feature 57 and multiplied by 2. So that the new entries are

Y Zk Mg + Zk M

Note that now M* is asymmetric. The assortativity can then be studied by visual-
izing the plot of M*.

The general feature assortativity of the network can be assessed via the Pearson
correlation coefficient, which is computed as before with slight refinements as done
for the strength.

2.5 Time

The methods presented in the previous sections allow to study the interactions
between nodes without considering any temporal aspects. However, considering
just the static network is limiting. Human interaction has shown to be influenced
by past contacts [40] and in general many more patterns and properties of the human
behaviour can be discovered introducing the temporal components.

For every node we are going to consider the sequence of event times {t;} where
t; is the time of the ith event and 7; = ;11 — ¢; is the inter-event time (IET).

The first interesting quantity that can be studied is the distribution of IETS.
Ranging different datasets, such as mobile phone call, short messages or email se-
quences, Karsai et al. in [21] showed that ITETs present a power-law behaviour.

2.5.1 Burstiness

The classical definition of burstiness was introduced by Goh et al. in [14].

Definition 2.5.1. Consider an inter-event time sequence {7; } ;, then the burstiness
coefficient is given by

c—m CV -1

o+m CV+1

where the coefficient of variation is defined as the ratio between the standard devi-
ation and the mean of the sequence, so CV = Z.

For specific inter-event time distribution the measure has a precise value.

e If the sequence is periodic then B = —1 because o = 0.

e A Poisson process induces an exponential distribution for 7, then B = 0
because 0 = m.
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e For heavy-tailed distributions o >> m, then B is high. In an extreme case
B =1, which is considered as an extremely bursty sequence.

Another measure that can be computed is the local variation coefficient, origi-
nally introduced in [35].

Definition 2.5.2. The local variation coefficient of {7;}!, is given by

3 n—1 T 2
LV: 7 i+1
n—1 Z (Ti“‘Ti-i-l)

This measure is less sensitive to outliers, however, a power law distribution for
the inter-event times will generate, by definition, very high values with a small but
relevant probability. For this reason, it is not problematic that B might be influenced
by outliers. Again, LV has precise values for specific time sequences.

e LV =0 for a periodic sequence.
e LV =1 for a Poisson process.
e A bursty sequence yields to a large value of LV.

In general 0 < LV < 3. As noted by [24], differently from C'V, LV is affected by
correlation between 7’s.

2.5.2 Temporal correlation

It may be the case that an event induces a bursty sequence of other events. For
instance, a message sent in a group chat may generate a discussion which is going to
influence successive IETs. For this reason, to perform a more precise and complete
analysis of the temporal aspects, correlation has to be investigated too.

Memory coefficient

In [14], together with B, the memory coefficient M is introduced too.

Definition 2.5.3. The memory coefficient of an inter-event time series {7;}, is
defined as the correlation of consecutive time IETSs:

S (T — ma) (Tign — M)

M =
Vi m = ) Sy — ma)?

1 n—1 1 n
where m; = —< > " 'rand my = =5 >, 7.

A positive value of M suggests a positive correlation between consecutive IETs.
As seen in many real datasets of human activities [14], the memory coefficient is
slightly higher than what is expected for a Poisson process.
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Figure 2.3: Burst trains for At on the right. Events are represented with straight
blue lines, red and green intervals corresponds, respectively, to greater and lower
[ETs than At. In the example there are 3 trains with size 1, 3 and 2.

Autocorrelation

In the previous subsection, we have seen one measure of correlation of inter-event
times. Another way to study them is to focus on the autocorrelation of a specific
process [20]. Consider the following process:

n+1

w(t) = b,
i=1

where z(t) counts the number of events which happened at time ¢. Then the auto-
correlation function with delay time ¢4 is defined as:

 (oelt + 1) — ()2
Alta) = =0T - @

If the time series presents temporal correlations, then A(ty) typically decays as a
power law A(ty) ~ t;7. Even if this measure is used in many studies, it presents
some problematic behaviours. Indeed, it is influenced by broad shape distributions of
IETs which are common in many real datasets. As shown in [21], sampling 7’s from
independent power laws will generate a power law decay of A(ty), thus suggesting
the presence of correlation which does not exist. More specifically, the dependence
between the power law exponent of the distribution of 7 and ~ has been studied and
proven [20]. The limits of this measure can be overcome using the count of burst
train sizes, a measure proposed by Karsai et al. in [21].

Burst train size

Definition 2.5.4. Consider a sequence of events and an interval time At. A burst
train is a sequence of events such that the IET between successive events is at most
At, and those between the first event of the sequence and the preceding event, and
between the last event and the consecutive, are larger than At.

The number of events in a train is called its size E. For an easier understanding,
an example of burst trains can be seen in Figure [2.3]

If the inter-event times are independent, then the distribution p(E) of burst train
size follows a geometric distribution:

o) =[ [ ] [ [ s

0
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where f(7) is the distribution of the inter-event times. Note that this formula is not
influenced by the shape of f(7). For a finite At:

At
() dr=a<1
0

So then p(F) satisfies the following:
p(E) =a""(1-a)

As a consequence, for any independent inter-event sequence, p(E) decays exponen-
tially even if f(7) has a broad tail. Any difference in the shape of p(F) can be taken
as an indicator of temporal correlation of inter-event times.

In many real cases, p(F) oc E~# with 8 € [2.3,4.1]. Thus, burst trains consti-
tuted by many events are more likely to appear than in uncorrelated sequences of 7.
Correlation implies that short 7 tends to follow after another short one to make the
burst size larger. Moreover, p(F) shows a robust behaviour with respect to different
At, which is why its dependence is omitted by the notation.

Memory function

As proposed in [21], starting from p(F), it is possible to study another function
which is called the memory function.

Definition 2.5.5. The memory function p(n) of a time series is defined as the
probability that having already n events in a burst train, the next event is going to
be part of that same burst train. Thus, it can be written as:

SR PE) | PE=w)
2 5 P(E) > 5= P(E)
We are going to estimate each P(F) as the ratio between the number of trains

of size F over the total amount of trains.
Assuming that P(E) ~ E=?, we expect

p(n)

indeed:

p(n) = 2 p=ni1 P(E) ~ Juzy Do Pdx _ [z _(_n ot
S P(E) [ Dx—Pdx [z=B+1]e0 n+1

which suggests f = v + 1. It is possible to show that also the vice versa holds, so
assuming the shape above for p(n) it can be proven that P(FE) follows a powerlaw
with exponent § [21]. By studying p(n) and p(E), it is possible to discover not only
the potential correlation of the IETSs, but also the shape of the memory function
which regulates the formation of burst trains. This information can then be used to
develop a model which resembles the burst train creation process under these laws.
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2.5.3 Deseasonalization

Starting from burstiness to temporal correlation, one may argue that these phenom-
ena are naturally induced by the circadian rhythms of human life. Indeed, simply
following daily rhythm would force short IETs to follow short ones, with a small but
still relevant percentage of longer ones caused by nighttime. In [23], they suggested
that these phenomena were the cause of the power-law shape of IETs. To address
this query, a deseasonalization procedure can be applied to discover whether daily
or weekly rhythms are the only causes of these behaviours.

The procedure that will be used here was introduced by Jo et al. in [19] and in
[18]. Let n;(t) the number of events at time t of node i. The number of events at
time ¢ for a set of vertices A is then given by

na(t) = Z”z(t)

i€A

Let T be the period, in this thesis we will just consider 1 day period. Then the
event rate pa () with 0 < ¢ < T is computed as

T T4 /7] Ty
par(t) = = Z na(t+ kT) where sy = ZnA(t)
A k=0 =0

where Ty is the time of the last event. For ¢ > 0, par(t) = par(t + kT) for any
k > 0. Finally, the rescaled time ¢*(t) is defined as

e =3 par()

0<t'<t

Under this rescaling, the time is dilated at periods of high activity and contracted
for low activity. Finally, let ¢; the time of the jth event in the ith node, then the
rescaled inter-event time 77 is given by the following:

T = (t4) — () = Z par(t)

t; St'<t]'+1

Now, every statistics computed above, such as burstiness or temporal correla-
tion, can be recomputed on the rescaled time series. The results will show whether
circadian patterns played an actual role in those phenomena or not. Note that,
fixing different T will result in removing different patterns: with the choice of T" as
1 day, daily patterns are removed. Moreover, the activity level of nodes is usually
broadly distributed, thus dividing the set of nodes into groups of activity level leads
to a better and more precise rescaling.
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CHAPTER 3

Results

This chapter focuses on the analyses of the forwarding phenomenon on Telegram
which is viewed under two perspectives: network structure and timing.

In the first part, of great interest, will be the study of friend of my friend dynamic,
i.e. clustering, the detection of potential communities and the underlying bond of
these groups, the language assortativity and the analysis of the centrality of nodes.
While, in the second one, the focus will switch to the inter-event times analyzing
potential correlation, seasonality effects and other properties.

3.1 Undirected and unweighted

We are going to build an undirected and unweighted network where nodes correspond
to chats. In this setting, between chat A and chat B there is a link if, at some
point in time, one of them has forwarded content from the other. In the dataset,
there are some chats that have been forwarded from, but whose messages were
not collected due to the stop in the snowballing procedure. The study has been
performed both on a full network and a reduced one. As a full network, we refer
to the structure obtained by considering every chat whose content was forwarded,
even if its messages were not retrieved. Clearly, this procedure creates a big network
with around 3.5 - 10 vertices, but the vast majority of them are without additional
properties. More importantly, for this vast majority of nodes, no messages are
retrieved, thus this network misses a lot of real information. For instance, let A be
a channel in the dataset that forwarded a message from channel B which is not in
the dataset. Considering the full network, we would have a link between A and B,
but it may happen that B has forwarded content of another channel in the dataset
C, but this information would not be at our disposal, since the messages of B are
not retrieved. In light of this example, it is clear how a network built in this way
would draw a false picture of Telegram. This is the reason why a reduced one is
considered. Note that the same explanation and choice hold for the directed case.
The reduced network is, on the other hand, the graph built as explained above
keeping only the nodes whose messages were retrieved, so such that messages and
other properties are given. In this way, the true underlying relationships between
two nodes can be detected. Indeed if there is no link between A and B, then for sure
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Figure 3.1: The interactions between channels A, B, C' are plotted with the cor-
responding networks: both undirected and directed and weighted. Each blue box
represents a chat, the boxes inside are messages coloured depending on in which chat
they were sent first. The black arrow indicates that a message has been forwarded
from one chat to another. On the right, the corresponding networks are shown.

they have never forwarded anything from one another. Additionally, if someone has
forwarded a message from themselves, it would correspond to a self-loop, which is not
informative for the aim of the study, thus any self-loop is discarded. After removing
these edges, some nodes are left without any link, creating isolated entities which
again are not interesting for the study since they do not provide any knowledge of
the flow of information. Thus, they are discarded too. The process to build the
network is illustrated in Figure [3.1}]

From the implementation point of view, the following packages has been used to
manipulate the network: networkx [17], networkit and graph tool [33]. The last
two have an underlying C++ implementation, which ensures a quick execution of
the code, and they provide additional features not present in the first package, such
as degree preserving randomization or stochastic block model inference.

3.1.1 General statistics

The number of nodes N present in the network is 29609, while the number of
edges L is 472163. Note how the number of nodes is slightly lower than the total
number of chats collected, but it is due to the fact that we discarded self-loops and
isolated vertices. The graph is sparse since the number of edges L << L,,,, where
Lyow = w which is the maximum number of links that could be present in a
network with N vertices. In particular L/Ly4x ~ 1.1-1073.

In the considered network there is one connected component, so every node is
reachable from another one.
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Figure 3.2: Log-log plot of the PMF of the degree: a) Scatter plot of the distribution,
note that for high degrees a plateau appears. b) Log-binning of the plot on the left,
where the errorbars correspond to the std of each bin.

3.1.2 Degree

The maximum degree is 2299 and the average degree is (K) = >, % = 2L = 31.89.
In many real networks, such as film actors, telephone calls or protein interactions
network [27], the degree distribution follows a power law distribution. In Figure
, the degree probability mass function (PMF) is plotted. For high degrees, a
plateau appears, which can be explained by the intrinsic limit of the degree of a
node. At high degrees, there is just a small number of nodes or no nodes with such
degree, and this forms the plateaus. The distribution however does not resemble a
perfect power-law, which should appear as a straight line, but it shows a scale-free
behaviour. Recall that, a power-law-shaped degree distribution was predicted by
the Barabasi model, while for the Erdés-Renyi the binomial distribution would have
been expected.

3.1.3 Degree centrality

For the Telegram network, the degree centrality DC ~ 7.66 - 10~2.

Type Sample Size Mean Std
Barabasi-Albert 100 1.82-1072 | 3.14-1073
Erdés-Renyi 45 85-1073 | 5.78-107°

Table 3.1: Degree centrality of networks generated with known models: Barabasi-
Albert and Erdds-Renyi. The two models generate networks with smaller DC.

In Table the value of DC' for networks generated from known models is
shown. From this measure we can understand that Telegram is structured in hubs
and less relevant nodes. Indeed, it has a DC' higher than classical models.
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3.1.4 Clustering coefficient

In Telegram, it is natural to think that a channel A, which is interacting with
another one B (by forwarding from or vice versa), is more likely to interact with a
node C' which is already linked with B. For instance, an admin of channel A reads
the content of channel B and forwards some messages from it, at the same time in
the chat of B are present some messages of channel C, thus A is reading the content
of C via B. It should therefore be likely for admin A to forward from C'

This intuition is reaffirmed by the value of C'(G) ~ 0.248 which is much higher
than what it is expected from a random model. As mentioned in Subsection [2.3.2]
this value is in line with the results of other real-world networks [27].

Type Sample Size Mean Std
Barabasi-Albert 100 2.3-1073 | 2.16-107*
Erdés-Renyi 45 1.08-107% | 1.22-107°
Degree-preserving randomized 100 2.28-1072 | 3.52-1074

Table 3.2: Clustering coefficient of networks generated with known models:
Barabasi-Albert, Erd6s-Renyi and degree-preserving randomization. C(G) is lower
than in Telegram in all of the three cases. In particular, the degree distribution
alone cannot explain the high value of the coefficient.

As can be seen in Table [3.2] the three comparative models generate networks
with a much lower C(G). Moreover, both Barabasi and Erdés-Renyi models would
predict C(i) to be constant with respect to the degree k;. Regarding the whole

network, the latter predicts C(G) = % = 1.08 - 1073, while the first one C(G) ~
Un M) _ 3581073,

In Figure [3.3] the average coefficient mapped against the degree is plotted. The
y-value is computed in the following way: for every degree k, consider all nodes
with k; = k, then the average clustering coefficient is the average local clustering
coefficient among these nodes, so among vertices with the same degree. It is possi-
ble to see that, contrary to the mentioned models, C'(k) decreases with respect to
the degree k. To check whether this behaviour is simply caused by the fat-tailed
distribution of degrees, the same plot is shown for a degree-preserving randomized
network. This plot suggests that the degree distribution itself plays no role in the
local clustering coefficient: the orange function is constant and lower than the blue
one. This is fundamental in understanding whether having a scale-free degree distri-
bution leads to a high clustering coefficient per se. The independence on the degree
distribution is proved also by the clustering coefficient of 100 randomized networks,
which produced an average clustering coefficient of 2.28 - 1072,

We can summarize the results as follows:

e The local clustering coefficient is much higher than the prediction of Erdds-
Renyi and Barabasi-Albert models;

e It is not independent on the degree;

e [ts value is not a solely consequence of the degree distribution, which has been
kept constant in the randomization.
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Figure 3.3: The average local clustering coefficient among nodes with the same
degree is represented against the degree. The Telegram results are in blue, while the
degree-preserving randomized one are in orange. The latter is plotted using an error
bar where the points stand for the average coefficient per degree averaged among 10
simulated randomized networks, while the bars correspond to the standard deviation
between simulations.

As said above, C'(k) decreases with respect to k and this suggests the presence
of hierarchy inside the data, a property that both Erdés-Renyi model and Barabasi-
Albert ignore. The idea is that small nodes have a high clustering coefficient be-
cause they are part of denser communities, while hubs have small C'(7) because they
connect different communities. Moreover, the average clustering coefficient for the
randomized graph decreases a bit but it seems to be constant overall.

3.1.5 Distances

For the Telegram network we have (d) ~ 4.00, so on average with 4 links we are
able to go from one chat to another one. This value is quite small, in line with
other real networks [27], and since C'(G) is high too, this suggests the presence of a
small-world behaviour.

Again, it is interesting to compare the value obtained with the one predicted by
other models. More precisely, for a Erdés-Renyi model (d) ~ 1&% ~ 2.97, while for
a Barabasi-Albert (d) ~ 2% ~ 2.33. The computed (d) is of the same order of
magnitude of the one obtained from graphs generated by these models.

For Telegram the diameter is 9, meaning that via at most 9 forwarded messages
it is possible to reach a chat from another arbitrary one. Both (d) and d,,, are small
compared to the size of the network, reaffirming the tendency of real networks of

having small distances.

3.1.6 Degree correlation

In a social network like Telegram, one may expect to detect an assortative behaviour.
This would mean that connected chats have a similar number of contacts. To in-
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Figure 3.4: The degree correlation function of, respectively, the Telegram network
(blue), the degree preserving randomized network (orange). In black, the prediction
for a neutral network.

spect the presence of degree correlation, ky,, (k) is computed and plotted in Figure

3.4l Recall from Section that networks may appear as disassortative due to a

structural limit caused by the fat-tailed degree distribution. In the Telegram case,

we have seen that the degree distribution has indeed such a shape and the structural

disassortativity threshold is ks(N) & 972 < kyeq. To check if this phenomenon oc-

curs, we plot k,,(k) for a degree-preserving randomized graph. In the plot, we can
(K2)

visualize the prediction for a neutral random graph too which is k,, (k) = XR

From the plot, the network seems to be neutral, except for a slight decrease
for high k, which is present also in the randomized version, indicating structural
disassortativity. Note also that the plotted functions are similar to the prediction
for a neutral network.

Finally, although they present some drawbacks, the correlation coefficients are
computed too. The Pearson coefficient is r = —0.056 and for 100 randomized
degree-preserving graphs the average is r, = —0.042, respecting the prediction that
a randomized has to be neutral. Clearly, the value of r is suggesting linear inde-
pendence since |r| ~ 0. Similarly for 100 Barabasi-Albert models where on average
—2.57 - 1072 and for 45 Erdds-Renyi we have —3.27 - 107,

The Spearman coefficient is instead ry = —0.861, while for the randomized it is
on average —0.554. This suggests a monotonic relationship in the function which
should not surprise us. Indeed, looking at the plot in Figure |3.4, it is possible to
detect a slight decrease. Note also that the randomized value is slightly towards —1
suggesting a decreasing relationship too, which is in line with the remark regarding
structural disassortativity.

Overall, the Telegram network is neutral and features, at high degrees, structural
disassortativity.
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Figure 3.5: Extraction of the original heatmap plot for the language assortativity.
The values plotted were selected based on an higher value on the diagonal. Note
that, in this subset of languages are present the most popular ones across nodes.

3.1.7 Language

Language is a key component of human relationships, intuitively we expect people
speaking the same idiom to interact more than with speakers of different languages.
It becomes then natural to investigate whether this pattern can be found in Telegram
and if it can be considered a driving force of inter-channel relationships.

To address this task the measures introduced in Subsection 2.3.5] are used as
language correlation measures. A reduced M* is plotted in Figure |3.5] where the
languages with the highest value on the diagonal are shown. While, in Figure [3.6]
M* is plotted applying the log on every entry. From the figures, a positive correla-
tion between chats’ languages is detected, especially for languages more present in
the dataset. Moreover, languages spoken in geographically close regions tend to in-
teract with each other. For instance, Central European languages, such as German,
Spanish, Italian, Portuguese and English, interact a lot with each other and the
same happens between Russian and Ukrainian too. Interestingly, the chats where
no language was recognized, correspondent to unknown language in the plot, seem
to speak with every other idioms indistinctly.

Finally, as done for the degree, it is possible to sum up the results by computing
the assortativity coefficient. Recall that a coefficient close to 1 suggests assortativity
and for Telegram we have r;, = 0.906, while for 100 degree-preserving randomized
ones on average we have —9.72 - 107°, denoting a clear assortative pattern of the
network with respect to languages, which is completely destroyed by randomizing
the edge placement.

3.1.8 Communities

To recognize potential communities, the SBM inference approach is applied. After
a hierarchical recognition, the highest levels are studied. In particular, the last ones
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Figure 3.6: Heatmap of M* on the log values. The zero entries are modified by
adding 107%. A clear positive correlation is present, detected by the high values on
the diagonal. It is possible to see other interactions between language with similar
cultural background.
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consist, respectively, of 7, 3 and 2 communities detected. We have seen how chats
tend to interact with those who share the same language, consequently, it is natural
to ask whether these communities respect an idiom division or not. The answer can
be found in Figure [3.7 Communities are strictly related to the language spoken
inside of it and, more specifically, geographical division seems to be predominant
in the group formation. This last remark can be explained by the fact that nearby
countries may have similar topics to discuss. Additionally, individuals are more
likely to be able to talk and understand the language of a nearby country rather
than the idiom of a more distant one. As noted in the previous subsection, the
chats with no language recognized speak indifferently with others. This tendency is
reaffirmed in communities, where the unknown chats split into all groups recognized
almost uniformly.

3.1.9 Summary

Throughout the section, it has been possible to see that the Telegram network
is characterized by a scale-free behaviour of the degree distribution. It has the
small world property, which corresponds to a high clustering and a small average
shortest path length. The clustering is high and is not solely induced by the degree
distribution. Moreover, a chat interacts with another one (being cited or citing)
independently of their degrees. Finally, it is assortative with respect to the language
and shows a community structure partially along language lines.

3.2 Directed and weighted

The general setting of the network that will be considered in this section is the
same as in the previous one. Differently from before, from channel B to channel
A, there is a link if, at some point in time, A has forwarded a message from B.
To the link is associated a weight which corresponds to the number of times A has
forwarded content from B. Again, both the full network and the reduced one have
been analyzed, but similarly to before the most reliable information is obtained from
the reduced one. Self-loops are discarded again for the same reason i.e. they do not
provide any flow of information between nodes. An example of chat interactions
from which this network is built can be seen in Figure |3.1

3.2.1 General statistics

The number of nodes N present in the network is, as before, 29 609, while the number
of edges L is 501897. In the studied network there are 10741 strongly connected
components with a major one of size 18578. The total number of events, which
corresponds to the sum of edge weights, is 7500509. The distribution of the latter,
which can be seen at Figure [3.8] seems to have a power-law shape.
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Figure 3.7: Community detection from SBM inference: respectively the first row
corresponds to 7 communities detected, the second one to 3 and the last to 2. On
the left the network is divided by colour into the detected groups. On the right it
is shown the group membership across the 11 most spoken languages.
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Figure 3.9: The log binning of the PMF of in and out-strength. The straight
dashed line is the power law fit for the in-strength values with exponent a@ = 1.22
fitted in a reduced window of values: [10, 1500].

3.2.2 Strength

The average in-strength s and out-strength s are the same:

i

1 N N
5= szwﬁ ~ 253.32

i=1 j=1

By plotting their PMF in Figure 3.9] they seem to follow a power-law behaviour
with the usual effect on the tail due to the intrinsic limit in the strength value.
The in-strength PMF is fitted as a power-law with exponent a = 1.22 in a reduced
window of values: [10, 1500].

We may expect that channels with a higher number of participants in them are
more cited than others because their content is exposed to more people. A slight
monotonic tendency can be seen in the data as shown in Figure [3.10
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Figure 3.10: Comparison between the out-strength and the number of participants
of channels. Points are coloured depending on some particular attribute, such as
whether they were flagged as scam or not. A monotonic relation seems to exist,
while nothing relevant is detected for verified and scam channels.

3.2.3 PageRank

In the Telegram network, the direction of the links is chosen to follow the flow of
information. Thus, the PageRank would define central nodes as chats where a lot
of information arrives, which does not capture the true relevance of a vertex in
this setting. For this reason, it makes more sense to compute this measure on the
network with reversed links. When a message is forwarded from a channel, from
the text itself it is possible to directly go to that channel. Considering the reverse
network, we will then have a completely analogous case to the WWW network. In
this way, the most central nodes are going to be the one from which information
comes.

In Figure [3.11], the PageRank density is shown. As seen for many other distri-
butions in this thesis, the density resembles the one of a power-law, suggesting the
presence of a small but consistent number of nodes which are much central than
others. Two chats have a high PageRank compared to the others, these are Persian
channels with a high number of participants which were created in September 2015.
One is the channel of the Khat-e Hizbollah magazine and the other is the channel
of the Ayatollah Khamenei Office Information base. The two are thus reasonable
chats to have high PageRank since they are actual real-life sources of information
and they share it in their chat. Having considered the reversed network, the PageR-
ank should monotonically depend on the out-strength, while no clear dependence
is expected for the in-strength. All these predictions are confirmed by looking at
Figure |3.11| where the centrality measure is compared to the strengths.

3.2.4 Clustering coefficient

Applying the Definition to the Telegram network, we expect the clustering
coefficient of the network to be lower than in the undirected case, since it computes
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Figure 3.11: PageRank analyses: (a) Density of the PageRank. (b) PageRank
compared to the in and out-strength. In the second plot, as predicted, it is possible
to see a monotonic dependence between the two variables.
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Figure 3.12: Clustering coefficient of nodes with the same in-strength, out-strength,
PageRank respectively. In blue, the data from the Telegram network is plotted,
while the randomized values are in orange.

the number of triangles present over all possible combinations and in the directed
case many more combinations are available. In this case Cy,(G) = 1.06-107°, while
for 10 degree-preserving randomization on average we have Cyy(Grang) = 4.45-1077.
This network still preserves high clustering after adding the direction and weight
to the links. In Figure [3.12] we can see the relationship between the clustering
coefficient and some centrality measures. In these cases, it seems that there is no
clear dependence of the coefficient with respect to any these centrality measures.

Again, the clustering is higher than in the randomized case, thus this high value
is not explainable simply by the strength distribution. We can conclude that the
Telegram network has a high clustering both in the undirected and in the directed
case.

3.2.5 Strength correlation

In the undirected setting, the network appeared to be neutral, so the connection
between two nodes is independent on their degrees. We now compute the function
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Figure 3.13: Strength correlation function of all 4 combinations. Again, in blue the
results from the dataset, while in orange for the randomized network.

for all 4 combinations of strength correlations: out-out, out-in, in-out and in-in.

To explain what assortativity means in this case, first we need to characterize
nodes with high/small out-strength and high/small in-strength. Nodes with high
out-strength are nodes whose messages are forwarded by either many chats, by some
chats many times or both; while nodes with high in-strength are chats that forward
a lot of messages from one or many chats.

Thus, assortativity in this setting means that nodes which are cited a lot/less by
others are more likely to have as out-neighbour (i.e. be "forwarded’ by) a chat which
forwards a lot/less. Note that this may appear as something obvious: if a node has
a high out-degree then the out-neighbors are more likely to have high in-degrees,
but, in an assortative case, this happens more than what we expect in a randomized
network.

Looking at the out-out plot in Figure before a threshold (around 2 - 10%),
it seems to have an assortative behaviour, but for higher values of the source out-
strength, it turns out to be disassortative. It could be a hint of structural disassorta-
tivity, however the randomized network does not suffer from this. Note that, in the
out-in correlation plot, the function seems to suggest assortativity for the Telegram
network, while for the randomized is constant. For the in-out, the function seems
to have a major drop for high degrees, which to some extent also the randomized
has. This might be a suggestion of structural disassortativity for high strengths.
Regarding in-out and in-in correlation, the network is neutral. Finally, to measure
the monotonic relation between the variables, we compute the Spearman coefficients
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for every combination which are shown in Table [3.3]

Correlation type Spearman coefficient
Network | Random
out-out 0.205 —0.0871
out-in 0.585 —0.295
in-out 0.0286 —0.212
in-in 0.195 —0.0896

Table 3.3: Spearman correlation coefficients for the Telegram network and random-
ized one.

From the table above and the analysis of the plots, we can say that there is an
assortative behaviour for the out-in combination and it cannot be explained simply
from the distribution of weights. The Spearman coefficient is not able to capture
the behaviour of the out-out combination, because the average out-strength of the
targets seems to be increasing and then decreasing with respect to the out-strength
of the source.

3.2.6 Language

The previous undirected network manifested a strong assortativity of languages
which can be checked also in this more complete setting.

As before, a reduced M* is plotted in Figure while the log values of M* are
represented in Figure [3.15] Again, an assortative behaviour between languages can
be seen looking at the plot.

The Pearson coefficient in this case is r;, = 0.940, while for 10 randomized net-
works we have on average —3.27 - 107, denoting again a clear assortative pattern
of the network with respect to languages which is destroyed by the randomization.
Similar conclusions can be drawn by looking at the Figures and where the
matrix has high values on the diagonal. In the second plot, it is possible to inves-
tigate how different languages relate to each other. For instance, Central European
idioms speak a lot to each other and the same happens for Russian and Ukrainian.

3.2.7 Communities

As done in Subsection [3.1.8] it is possible to investigate the upper levels of the hierar-
chical SBM recognition and to study the language distribution across communities,
visible in Figure[3.16 In this recognition, the number of groups are respectively 7, 4
and 2. Again the community detection follows a geographical subdivision. Differ-
ently from the undirected study, now Arabic is part of the European group instead
of the Persian one. This may have happened because European and Arabic chats
do not share many links, but they are strong. The other two big groups made of
Russian and Ukrainian and the European one are unchanged.
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Figure 3.14: Extraction of the original heatmap plot for the language assortativity.
The values plotted were selected based on a higher value on the diagonal.

3.2.8 Summary

Adding direction and weight to the links, many properties observed before are found
again in this new setting. In particular, in and out-strengths have a scale-free
behaviour, the clustering is higher than in the randomized case and the interaction
between chats is assortative with respect to the language. Similar communities were
recognized with the difference of Arabic chats which share strong ties with Central
European speakers.

3.3 Time

In the previous sections the interactions between nodes is studied without consider-
ing any temporal aspects. However, considering just the static network is limiting.
By introducing the temporal component, we can broaden the study of human dy-
namics by relating their behaviours to the timing of their interactions too. Thus,
in this section, the temporal component of the dataset is studied. We are going to
focus on the behaviour of inter-forwards timing. Of particular interest will be the
computation of burstiness, temporal correlations and seasonality. All these measures
will allow us to characterize the behaviour of Telegram chats in forwarding content.

The number of chats which have ever forwarded at least one message is 22 650.
We will refer to event of a node or of a chat as the forwarding of a message. For
every node, we are going to consider the sequence of event times {t;} where ¢; is the
time of the ith event and 7; = t;41 — t; is the inter-event time (IET). Every time is
considered in seconds, where t = 0 is assigned to the first event of the network. The
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Figure 3.16: Respectively the first row corresponds to 7 communities detected, the
second one to 4 and the last to 2. On the left the network is divided by colour into
the detected groups. On the right it is shown the group membership across the 11
most spoken languages.
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Figure 3.17: The event sequence of a specific chat over the total time window. Every
event is represented with a straight blue line. Short inter-event times follow one
another forming blue vertical bands, while longer ones follow each other, creating
white bands in succession.

total time window spans 4 years from 2015 to 2019, which corresponds to around
108 seconds. A sequence of events for a specific node is represented in Figure .
Already from this figure, it is possible to see how short IETs tend to follow short
ones, which is detectable from the blue vertical bands.

Looking at the probability density function of IETSs in Figure 3.18] it is possible
to note that they follow a scale-free distribution. In particular, the distribution
seems to follow a power-law with 2 different regimes. The exponents are estimated
as a; = 1.00 and ay = 1.69. In the second regime, the slope is steeper than in the
previous one. The density of 7 seems to follow:

£(r) Cr=190 if1 <7 <10°
T) =

D=9 if 7 > 10°
where C' and D are the normalization constants. The switch of regimes happens
around 10° seconds which roughly corresponds to 1 day, which is a natural timescale
on which to observe a change in behaviour. Investigating the distribution of other
real datasets , such as mobile phone call, short messages or email sequences, the
IETs distribution resembles a power-law with the presence of 2 regimes where the
switch point is again around 1 day.

3.3.1 Burstiness

Human activities are known to be bursty, so dominated by sequences of short inter-
event times and very few long ones. This behaviour is often associated with the
intrinsic bursty nature of humans caused by circadian patterns. Following a daily
pattern, it seems natural that events will happen shortly after each other with
longer pauses corresponding to nighttime. Nonetheless, in many cases such as the
Short Message or Mobile Phone call dataset , Jo et al. have shown that this
behaviour remains after performing a de-seasonalization procedure. Telegram is a
social network too, thus we expect similar results. First of all, the coefficient B is
computed, then in Section [3.3.3| a de-seasonalization procedure is applied.

B has been computed for every node’s IETSs sequence, and the distribution of
such coefficients is plotted in Figure|3.19, The distribution is centered around a value

bigger than 0, precisely B = 0.304, suggesting that the underlying process is not
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Figure 3.18: The probability density function function of IETs. The vertical lines
indicate respectively 1 second, 1 minute, 1 hour, 1 day, 1 week and 1 month. Every
7 = 0 has been considered as 1, which explains the high value of the first point.
There are two regimes with a transition point at around 1 day.

Poissonian. Moreover, the curve is shifted towards the right. In this computation,
in order to have at least 2 IETSs, all the event sequences with at least 3 samples
are considered, but for too short series the value of B cannot be considered reliable.
Intuitively, these small series might be the explanation behind a distribution of B not
so close to 1 as expected from a scale-free distributed 7. This intuition is confirmed
by looking at the second plot of Figure [3.19] where just the 1000 series with most
events are studied, showing a distribution much more shifted towards B = 1.

Considering the series of all inter-event times, the overall burstiness is B = 0.812,
suggesting a high level of it, which is in line with the values of other human activities
[14].

The LV distribution is centered around 1.45, confirming the presence of bursti-
ness in the time sequence. Its density is plotted in Figure [3.20]

3.3.2 Temporal correlation

To study the temporal correlation of the time sequence, as suggested in Subsection
2.5.2, the memory coefficient M and the burst train sizes are analyzed.

Memory coefficient

As done for the other measures, M is computed for every chat with at least 3 events.
However, its distribution has an odd behaviour at the tails with high peaks at the
boundaries. This phenomenon is caused by short time series which do not provide
a reliable value of M. For this reason, it is more informative to consider chats with
at least 7 forwarded messages.

The corresponding distribution is plotted in Figure and it is centered around
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Burstiness Burstiness of longer time series
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Figure 3.19: Distribution of the burstiness coefficient B in two different cases: a) For
every inter-event time sequence. b) For the 1000 time sequences with most events.
Both are shifted towards a positive value, denoting the presence of burstiness. The
right one shows that longer sequences have a more bursty behaviour.
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Figure 3.20: Distribution of LV computed for every active chat with at least 3
events.
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Figure 3.21: Distribution of M in chats with at least 7 messages forwarded.
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Figure 3.22: Burst train size distribution: a) Distribution of p(£) for different At.
b) Log-binning of the distribution of p(£), in black the fitted power-law. In both,
there are plateaus caused by the intrinsic limit on the burst train sizes.

0.161. This suggests a small positive correlation between successive IETs. As seen
in many real datasets of human activities [14], the memory coefficient is slightly
higher than 0, which is the value expected for a Poisson process.

Burst train size

As seen in Subsection if there is some type of correlation in the IETs sequence
then we should detect it by studying the distribution of burst train sizes. Burst
train sizes are computed for every chat for different At and then the results are
considered together to plot the distribution. The At considered are 10 seconds, 1,
2, 5 and 10 minutes. The distribution, shown in Figure [3.22] resembles a power law
with fitted exponent g = 3.07 for At = 120s. Varying At across its whole range
of possible values, p(E) shows a robust behaviour as visible in Figure [3.23] The
shapes resemble again a power-law but with slightly different slopes. The power-
law behaviour of p(F) suggests that inter-event times are not independent and that
there is some type of correlation between them. In particular, from the meaning of
burst train size, it seems that short IETs come in succession.

It is possible to explore whether inhomogeneities in the in-strength of nodes can
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Figure 3.23: Log-binning of p(E) for a wide range of At. The power-law looking
shape is robust with respect to At. As At approaches 4 years, the distribution
converges to the one of the in-strength.

play a role in the burst train sizes and in the distribution of inter-event times. To
check this, the chats are segmented by in-strength in groups of equal size, and the
distribution of previous measures is recomputed per class. Concretely, chats are
divided into 10 groups of 2265 elements each based on their activity. Some basic
statistics of the groups are summarized in Table [3.4]

In Figure 3.24] the distribution of inter-event times divided per group is plot-
ted. The tails of the distributions and group 0, which is the group with the most
events, constitute the biggest differences across the functions. Regarding the tail,
dissimilarities can be caused by the following tendency. Chats with low activity
levels have longer inactive periods between bursts which induces a long tail in p(7)
with a delayed drop. On the contrary, highly active chats have shorter 7 which
implies a smaller frequency of long 7. This actually explains the two discrepancies
at the same time, indeed group 0 is made by nodes with higher levels of activity.
In particular, the amount of activity of other groups is comparable, but this does
not hold for group 0. In that set, the in-strength of some nodes is of some order of
magnitude higher than the one of other groups. This will cause extreme behaviours
of group 0 with respect to others and it is consistent with what we see in the plot.
The red line has indeed higher frequencies for smaller 7 and much lower for bigger
ones with respect to all other lines.

Interestingly, scaling the times with respect to the average 7 of each group, the
distributions turn out very similar across groups. Finally, no difference between
groups is seen in the burst train size distribution. Clearly, the burst train size for
groups with lower activity is shorter, but this is a difference induced by the different
intrinsic limits in the train sizes.

Number | Group 0 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Group 9
of events

Min 579 206 98 52 28 16 8 4 2 1
Max 184876 578 205 98 52 28 16 8 4
Mean 2 666.64 345.55 144.24 72.61 39.18 21.45 11.7 6.06 2.86 1.19

Table 3.4: Statistics of the number of events per chat across different activity bins.
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Figure 3.24: Analyses on different groups: a) Distribution of inter-event times of
chats. b) Re-scaled plot. ¢) p(E) for At = 120s.

It can be concluded that having considered all nodes together as one group has
not influenced neither the detected correlation nor the recognition of the distribution
of inter-event times as scale-free. This result justifies the choice of a time model with
the same parameters for every simulated chat, as we will see in more details in the
next chapter.

Memory function

In Telegram, the memory function computes the probability that a chat will forward
another message within a At time frame after it executed n events in the actual burst
train. In the previous section, we have seen that p(E) ~ E=° with 8 = 3.07 and,
according to the computations in Subsection regarding p(n), we expect the

memory function to satisfy the prediction p(n) = (HLH)
As can be seen in Figure [3.25] the memory function satisfies indeed the pre-
dictions. The fit is computed for train sizes corresponding to different At using a

nonlinear least square procedure. The fitted values for v are shown in Table [3.5]

At | 10s | 60s | 120s | 300s | 600s
v 217|214 | 2.10 | 2.11 | 1.87

Table 3.5: Fitted exponent v of the memory function for different At.

The estimation changes a bit depending on At but all of them range around
values such that § =v + 1.
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Figure 3.25: Plot of the complementary memory function 1 —p(n). The log-binning
of the dataset estimation of 1 — p(n) is plotted using the blue dots and the standard
deviation of the log-binning is plotted as light blue lines. The black dashed line is
the fit of the function 1 — (L)V Data seems to fit well to the predicted function.

n+1
With different At considered, the best fitting v varies a bit, always ranging around

B—1.
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Figure 3.26: After simulating burst trains under p(n) with v = 2.1, the log-binned
p(F) is plotted as red squares. The blue dots represent p(E) of Telegram with
At = 120s and the dashed line is the power-law fit from Telegram data.

As said before, assuming a specific formula for the memory function, it is possible
to prove that p(E) ~ E~#. Simulating a process with p(n) = (RLH)V with v = 2.1,
the obtained p(E) of the simulated burst trains follows a power-law which is very
close to p(FE) of the original data, as can be seen in Figure m This result suggests
that p(F) can be reproduced starting from a burst train process based on p(n). Note

that again v 4+ 1 = § approximately.

Both the good fit with data and the correspondence between the shape of p(FE)
and p(n) hint that the memory function is a driving force of the Telegram network
of forwarded messages. These suggestions will then be used to develop a model for
the inter-event times.

3.3.3 Deseasonalization

To check whether the obtained results are induced by circadian patterns, the desea-
sonalization procedure presented in Subsection [2.5.3]is performed.

One group

In this subsection, consider A as the set of all chats and T" as a 1 day period. The
distribution of IETSs resembles a power-law with approximately two regimes. The
distribution of B is similar to the one before deseasoning and it is centered again
around 0.304. The value of B for the overall series is 0.812. The distribution of burst
train sizes follows a power-law behaviour with a fitted exponent very close to the
previous one: 3 = 3.11. Overall, the aim of this study was to show that the qualita-
tive behaviour of the series remained the same after deseasoning. From what we can
see in Figure [3.27] circadian patterns play no main role in burstiness and temporal
correlation. Thus, in Telegram, humans have these behaviours independently on the
daily rhythms they follow.
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Figure 3.27: Statistics of the deseasonalized inter-event times series: a) Distribution
of 7’s. b) Distribution of B. ¢) Distribution of bursty train sizes.
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Figure 3.28: Statistics of the deseasonalized inter-event times series divided per
activity groups: a) Distribution of 7’s. b) Distribution of B. c¢) Distribution of
bursty train sizes.

Activity based groups

Here, we will perform a deseasoning based on activity groups. In particular, recall
the division in groups of Table [3.4] where we had 10 groups of chats based on their
activity. The procedure is then carried out for each group individually and the
period T is again 1 day.

As can be seen in Figure [3.28] the IETs distribution resembles again a power-
law. Note that, in that plot, the black dots represent the same distribution but for
the original time series. It is then immediate to see that just a few black dots are
visible while the majority are covered by the colored ones. The burstiness is again
shifted towards the right, centered again approximately around 0.304. Finally, the
burst train size divided per activity shows a power-law behaviour.

3.3.4 Reinforcement

From scientific collaborations to Twitter mentions , humans tend to create a
friend circle and reinforce those ties rather than creating new ones. In particular,
human relationships seem to suffer from an intrinsic limit in the number of connec-
tions a person has. This translates into a law for which the higher the number of
contacts one has, the less likely it is to form new ties. It is possible to encapsulate
this idea as done by Ubaldi et al. in [40]. In the Telegram network, we refer to
reinforcement process as the tendency of a channel to forward from a chat it has
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Figure 3.29: In blue the estimated reinforcement function from data. In black the
fitted function with b, ¢ = 1.

already forwarded from in the past, rather than from a new one. It is possible to
define this process via the function f(k) which represents the probability to create
a new link rather than reinforce an old one, given that we have already contacted
k other nodes. This function, which will be called reinforcement function, can be
estimated from data as follows:

fk) = —+

e(k)

where

- n(k) is the number of times that a chat with & contacts forwards a message
from a chat it has never interacted with.

- e(k) is the total number of forwards performed by chats when they have k
contacts.

These two quantities are computed for all nodes and then summed together.
In [40], they suggest to fit this function as

pes(k) = (1 + %) K

Using nonlinear least squares approximation, ¢ and b are estimated from data as 1.
The function p;1(k), plotted in Figure [3.29, fits perfectly the data. This suggests
that the reinforcement process is indeed a driving force of Telegram relations.

3.3.5 Summary

Throughout this section, it has been shown, in different ways, how inter-event times
have fat tails and show temporal correlation. These phenomena, which intuitively
could be explained by the circadianity of human activities, are instead intrinsic to
the behaviour of people. Moreover, the underlying process seems to be driven by
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the memory function, which generates a series of bursts and moments of calmness,
and by the reinforcement of old ties.

3.4 Stationarity

To investigate more deeply the structure of the network, it is possible to repeat
the analyses above considering a subset of the total time window. First, since the
dataset ranges across 4 years, the data has been split into 4 parts depending on the
year. The network and time analyses have been repeated showing consistent results
throughout the years with just a few differences. In particular, the Russian language
appears in the dataset in the last 2 years and the burstiness is slightly higher in the
first two years. Then the dataset has been considered before and after a relevant
event that could have induced a change in the structure of Telegram: the introduc-
tion of discussion chats. These chats are groups in which all the participants can
comment on what has been sent in the main channel. In particular, many of these
chats automatically forward content from the original channel. Their introduction
implied a spike in the number of forwards and it could have changed the patterns
observed for this action. Indeed, the forwards made in these chats resemble more the
phenomenon of sending messages rather than forwarding them and it may present
different characteristics. From qualitative analyses, the network properties observed
before are found again in this setting. Regarding the temporal aspects instead, the
burstiness seems to decrease after the introduction of discussion chats but still has
high levels, while the correlation between 7’s remains untouched. The results of this
analysis suggest that the network is stationary with respect to time. Thus, it is
reasonable to develop a model with parameters which do not depend on the age of
the network.
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CHAPTER 4

Model

In the previous chapters, it has been possible to characterize the Telegram network
under different aspects. Both from a temporal and topological perspective, the
dataset has shown to follow some specific patterns, which can be seen as the driving
force of the dynamic or as a consequence of the underlying mechanisms that regulate
the forwards. Those results are used to develop a model for Telegram data, which
consists of two parts: one for the temporal aspect and the other for the network
structure. In a first step, the timing at which chats forward content is simulated
with a time model. Then, based on the simulated inter-event times (IETSs), the
network model is deployed to choose from which chats the forwards are made. After
presenting both, the results of various simulations are shown and commented on.

4.1 Time

From the temporal point of view, the dynamic of the chats is bursty and correlated.
Moreover, it is driven by the memory function p(n). The idea behind the time
model comes from [21] of Karsai et al. where they propose a model to reproduce
both correlation and fat-tailed distribution of inter-event times. The structure of this
model is summarized in Figure 4.1 A chat can be in state A, which is a quiescent
state, or in state B, which is an excited state. Once it reaches a state, it has to
perform an event there, i.e. forward a message, under the laws of that state. After
performing an event, it is possible to stay in that state or move depending on some
probabilities. This model can be adapted better to Telegram data by introducing
the birth date of every chat.
The model consists in the following steps:

e At first, the state is chosen randomly and the event time is set to the birth
date of the chat.

e If the current state is A, then an event is performed there. The counter of
actual inter-event time ¢ is set to 1 at first. Then, at every time step, an event
is generated with probability 1 — f4 =1 — (H%)UA, so that the current t is the
inter-event time from the previous event. Otherwise, we increment ¢ by one

and we go back making a random draw until an event is performed. After an
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Q)

Figure 4.1: Model of the event times. A is the quiescent state, B is the excited
state.

event has been performed, with probability m we go to state B, otherwise, we
stay in A.

e If the current state is B, then an event is performed there as in A, but the
timing is regulated by fz = (H%)UB Let n be the number of consecutive events
that happened in state B since the last time we entered that state. Then with

probability p(n) = (HLH)V, which is the memory function depending on v
introduced in Definition [2.5.5, we stay in state B, otherwise, we switch to
state A.

e We continue until the simulation time span is reached.

This model can generate heavy-tailed distributed 7’s and temporal correlation.
The presence of the memory process, which regulates the transition from state B,
introduces correlation between the IETSs generated and, thanks to the observations
in Subsection [2.5.2 we expect the model to recreate long bursty trains with a fat-
tailed p(E). The assumption behind the choice of f4 and fp is that the more time
a chat has waited to forward a message, the longer the admins are going to wait.
Once we are in a certain state, the probability of having an inter-event time 7 is:

Pars(r) = fars(l) - - fars(r = 1) - (1= faa(r)) = 7708 — (r £ 1) (1)

which is a mixture of power-laws and has a heavy tail, as shown in Figure |4.2
The distribution of the 7 simulated by the model is not going to follow this exact
distribution, because it would be the result of the combination between the one of
state A with the one of state B. The combination between the two is difficult to
predict since it also depends on 7 and p(n). Nonetheless, we can expect to see a
heavy tail distribution.

In Telegram, the IET distribution follows 2 regimes, as seen in Figure |3.18]
shifting around 1 day, precisely 7, = 10°. To account for that, the model above is
modified by varying the value of u4 and ug depending on the threshold of the regime.
In particular, it is possible to do so by replacing u4 and ug with 2 parameters each.
In this way, if the current IET in a state is below the threshold, that we set to 75,
then w4 = uy, while if it is above ug = u4,. To change the value continuously, for
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Figure 4.2: The probability mass function of IETSs computed in equation is plot-
ted. For each function we have 2 parameters according to the observation regarding
the two regimes of Telegram IETSs distribution. In blue us, = 0.142, u4, = 0.729
and in red up, = 3.2, up, = 3.53. The parameters used are the one selected for the
time model.

a range around the threshold, we vary u,4 linearly:

Ug, ift <ty
ua(t) = %-H(um—%-tl) if t; <t <ty
UA, 1ft>t2

and analogously for up.

The parameters of the model are then wy,, wa,, up,, up,, ™, v. Technically,
t; and ty are parameters too, but they are chosen to be around the threshold. In
this case, they are fixed as t; = 10> — 7 - 10* and t; = 2-10°. In a more general
framework, they can be interpreted as parameters too. As seen in Subsection [3.3.2)],
it is reasonable to set v = 2.1. As suggested by the paper, u 4 is responsible for the
exponent of the power law of simulated 7’s, in particular us + 1 = «. Thus, the
region of possible values of w4, and uy4, will be reduced according to this additional
information. Moreover, since A is the calm state, then u4 < up and since the slope
of the second regime appeared steeper, then w4, < ua, and up, < up,. The domain
of definition of every parameter is set as follows:

uy, € [107%,0.5], ug, €1[0.5,0.8], ug, € [2,7],up, € [2,8], ® € [0.08,1]

These regions have been selected based on the remarks above and exploratory anal-
yses.

To fit these parameters, the method of Bayesian optimization presented in Sub-
section [2.1.2] is used to minimize the difference between the IETSs density distri-
bution of the data and the same function obtained from the model. Consider the
log-binning function of the IETs density distribution, then a simulation of the model
is run with some parameters for 5 hypothetical chats and the two log-binned dis-
tribution functions of 7 are compared. Note that to do this comparison the same
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log-bins are applied and any bin where no data or model observation is present is
not considered. The loss function is computed as follows:

1 data model\ ]2
L= Z [log(yi***) — log(y;"***")]
where 7 stands for the ith log bin, y; is the log-binned density and n, is the number
of log-bins. The difference between logarithms is used in order to give all bins
the same weight and not overly consider the first ones. The parameters are found
using Bayesian optimization with 1000 initial points and 100 exploratory ones per
iteration. The procedure stopped when the value L on the current best parameters
has been stable for at least 4 steps. To do so, it has been used the python package
presented in [28] with constrained optimization [13]. The values found are:

wa, = 0.142, ug, = 0.729, up, = 3.20, up, = 3.53, 7 = 0.157

Note that the parameters are the same for every chat and constant with respect
to time. This choice is consistent with the results of Sections [3.3.2] and [3.4] where it
has been shown that the correlation and heavy tail behaviour of IETSs is independent
on the activity level and age of a chat.

As we will see in the following, the approach above may not be able to reproduce
correctly the in-strength distribution of the directed network. To address this issue,
it is possible to add a limit to the number of events that each chat can produce. To
do so, a simulation of the in-strengths is sampled from truncated power-law, which
is a power law distribution with an exponential cutoff. This choice is made to have
limited values of the in-strength. Then, each chat is assigned an in-strength value
according to a specific order. First, the birth dates of the nodes are arranged in
ascending order, from the youngest to the oldest. Then, the sampled in-strength
values are arranged in descending order, with the largest ones assigned to the oldest
nodes and the smallest ones to the youngest nodes. Finally, the time model runs
until either the event time reaches the maximum value or the total number of events
performed matches the associated in-strength value. For simplicity, we are going to
call this version of the time model constrained and the first one unconstrained.

The two models are run for every active chat of Telegram, i.e. that has forwarded
a message in the total period, which are 22 650. The simulations will give, for every
simulated chat, a sequence of times at which the node forwards a message. On top of
these simulations, a network model is needed to reproduce the interactions between
chats.

4.2 Topology

The network both as undirected and directed has shown different interesting be-
haviours. They are both characterized by scale-free distribution of the strengths, a
high clustering and language assortativity. In addition, also degree correlation has
shown particular results with a neutral pattern in the undirected case and some
assortativity in the directed one. The process behind Telegram’s forwards seems
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to be driven then by some major causes: clustering, language assortativity and
reinforcement of old ties.

The model that will be considered to recreate the topology of the network is
inspired from Laurent et al. [22] which is based on 3 mechanisms to develop the
network: node deletion, reinforcement process and closure. The closure mechanisms
are able to recreate two different human tendencies. The first, called focal closure,
regards the propensity to choose a new chat to forward from, recreating the forma-
tion of links between nodes with shared interests or features. Instead, the second,
known as triadic closure, is connected to the tendency to contact a friend of a friend,
which implies high clustering values. The node deletion phenomenon is not present
in the Telegram dataset, thus it is discarded. Note that this model was thought
for undirected networks, while here it is adapted to create directed links. Among
the other main mechanisms, another one is introduced which regards language as-
sortativity. The nodes will be divided into groups, which in this case are based on
languages, and each group will be assigned an assortative coefficient which regulates
how much chats with the same attribute interact together. Additionally, every chat
is associated with its real creation date and at every step newly created nodes enter
the network, making its size increase over time.

At each time step, only active nodes are considered. The active nodes are nodes
who are going to forward a message at that time step and this information is provided
by the time model. These nodes can forward content from non active chats too. Let
n; be the number of contacts of node 7 up to the considered time step and pj; be
the ratio between the number of times i has forwarded content from j and the total
number of forwards of i. The flowchart of the model is represented in Figure 4.3
and the steps of the model can be summarized as it follows.

ng

e Let ¢ be an active node at current time step ¢, then with probability ™= it is
going to forward a message from one of its old tie, otherwise it forwards from
another chat, forming a new tie.

e In the first case, among its old ties, ¢ forwards from node j with probability
Pji-

e In the second case i has to choose a new node to connect with. At this point,
apart from particular cases, chat ¢ tries to forward from a friend of its friends.
Thus, a neighbour j of i is selected according to pj;, then, with probability
Prj, @ neighbour £ of j is sampled. Now, with probability pr¢, @ follows the
triadic closure mechanism, so it forwards from k to close the triad, otherwise,
it follows focal closure. In the latter case, 7 chooses a random node it has never
contacted before. If possible, with probability psy, ¢ selects at random a node
which speaks the same language, otherwise it chooses from all available chats.

Some specific cases which modify the flow of the model are the following. If 7 or the
selected 7 have no neighbour, or if the only neighbour of j is 7 then ¢ directly follows
focal closure mechanism. If a node is considered to be active from the time model,
but it cannot forward from anyone because it is the only node in the network, then
it is considered inactive. Finally, if all the nodes in the network at some point are
neighbours of ¢, then, when performing focal closure, neighbors are not discarded.
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Figure 4.3: Topological model where n; is the number of contacts of ¢ until that
time step, pj; is the ratio of the number of times 7 has forwarded content from j to
the total number of forwards made by i. The parameters prc and pgp, are to be set.
[7,7,t] refers to a forward from j to i at time t.

The parameters are pr¢, and pgr, which varies across groups. The first one is set
to 0.9 after exploratory and qualitative analyses. This parameter affects the value
of the clustering coefficient in the network, thus it can be chosen accordingly to
obtain the desired C'. The second one influences how a chat forwards from another
one which speaks the same language. This parameter can be the same for every
language, but, as seen in Figure [3.6] there is heterogeneity between languages, thus
it is reasonable to fix one parameter value per group. The quantity to be estimated
is the probability of a chat speaking a certain language to make a new contact with
a node speaking the same idiom, we will refer to it as the assortative value. Consider
the matrix M of Subsection then these probabilities can be estimated by the
diagonal of the matrix with entries % These entries, plotted in Figure a) of

[.4] have values between [0, 1], with a peak at 0 and a smaller one near 1. Thus, a
sensible modeling choice is to assume that the distribution of the assortative value
is a Beta(by,by). The mean and variance of this distribution are given by:

by
b1 + by

b1b2
(bl + 52)2(()1 + bQ + 1)

Using the method of moments, we can estimate b; and by using the sample mean
estimate  and sample variance estimate v, obtaining:

E[X] =

V(X) =

by = 0.135, by = 0.483.

A comparison between the sample of the assortative value and one obtained from a
Beta(bl, bg) is shown in Figure |4 . Qualitatively, the two samples seem to have a
similar behaviour. Since within the scope of this model, we only seek a qualitative
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Figure 4.4: Analysis for the assignment of assortative values pgr: a) In blue is
represented the distribution of the assortative value in Telegram, and in orange
the distribution for a sample of Beta(0.135,0.483). The two samples seem to have a
similar distribution. b) The assortative value of each language in Telegram compared
to the number of chats speaking that language. There appears to exist a monotonic
relationship between the two.

reproduction of language assortativity, the assortative coefficient of every language is
simulated with a sample from that Beta. Each idiom is assigned a sample from pgy ~
Beta(0.135,0.483) depending on how many chats speak that language. Indeed,
looking at Figure [4.4] it is possible to see that the assortative value depends almost
monotonically on the number of chats speaking that idiom. For this reason, the
beta samples are ordered and each value is assigned to a language according to the
rank of the latter.

This model can now be run on the data generated by the time model. Each
time a chat is active, the topological model returns from which chat the forward
is made, basing its decision on reinforcement of old ties, triadic and focal closure
and language homophily. Now, it is possible to use both models to simulate the
Telegram network and analyze the results.

4.3 Simulations

This section is divided into two parts with the presentation of the results obtained
from 10 simulations of the unconstrained and constrained models.

4.3.1 Unconstrained model

Overall, the model is able to reproduce the number of events of Telegram in the
same time period, the scale-free behaviour of the degree and of the out-strength, the
high value of the clustering coefficient both in the undirected and in the directed, the
neutrality of the undirected network and the assortativity with respect to languages.
Some properties averaged across the simulations are presented in Table [4.1] For
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Figure 4.5: Log-binning of the PMF of in and out-strength of Telegram and the two
models: a) Unconstrained b) Constrained. Telegram data is represented with crosses
with lighter colours, while the simulations’ results are indicated with errorbars. In
the first one, p(s™) has a flat shape, while p(s°“*) resembles the one of Telegram. In
the second one, both resemble the Telegram shapes.

the majority of measures, the results are in line with the Telegram ones, however,
the clustering of the directed and weighted network is much higher. Thanks to
triadic closure, the average clustering coefficient with respect to the degree and
to the strength is higher than in the randomized case. In the directed network,
the simulations show assortativity for the out-out combination and neutrality in
the other cases. As expected, IETs have a similar distribution and show temporal
correlation, plotted in Figure 4.8 with the burst train size distribution which has a
similar shape to the original one. However, it shows some limitations too. The in-
strength distribution, plotted in Figure [4.5{a), appears flat, indicating a behaviour
similar to a uniform distribution. This could have been expected since the number
of events is given by the time model, which is the same for every chat, thus the
in-strength should be similar across nodes. The only difference between chats is
the birth date, which creates the effect of a uniform distribution, rather than a
distribution centered around a specific value. For this reason, the constrained model
is introduced which has an additional limitation on the in-strength.

4.3.2 Constrained model

This model achieves the desired scale-free shape for the in-strength distribution
(Figure [1.5(b)) and all the other desired properties apart from one: the number
of events. In Telegram, the total number of forwarded messages was around 7.5
million, however, this model produces around 2.8 million. The major drop obtained
is clearly due to the in-strength limitation introduced.

As in the previous case, as can be seen in Table Caw is higher than the Tele-
gram one, while the other measures are in line with the Telegram data. Again, C' is
higher than in the randomized networks. The shape of k,,, (k) suggests assortativity
in the out-out case and neutrality for other cases.

Since the topological model is the same both in the constrained and uncon-
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Figure 4.6: Extraction of the heatmap plot of the language assortativity matrix of
a constrained model simulation: a) Undirected network b) Directed and weighted
network. The language assortativity does not change between unconstrained and
constrained setting, since the topological model is the same. The plots resemble
the ones from Telegram, represented in Figures [3.5 and [3.14] The model is able to
reproduce both assortativity, especially for popular idioms, and heterogeneity.
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Figure 4.8: Temporal analyses of the 10 simulations of the unconstrained model.
On the left, log-binning of the pdf of IETSs of Telegram (blue) and of the simulations
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deviations. The simulations show a consistent distribution of 7 which is very close to
the Telegram one. On the right, PMF of the bursty train sizes in Telegram (cross)
and in the simulations (circle). The simulations plot is averaged across the 10
samples. Both models are able to recreate the shape of p(E) but fail in reproducing

the long tail.

74



Chapter 4. Model

Metri Unconstrained Constrained Tel
etrie Mean Std Mean Std clegram

N 2.720-10% | 0.001 - 10* | 2.415-10* | 0.635-10* | 2.961 - 10*
L 3.24-10° | 0.03-10° | 1.66-10° | 0.05-10° | 4.72-10°

Cu 0.236 0.009 0.274 0.007 0.248
r -0.100 0.010 —0.093 0.015 —0.056
TL 0.875 0.080 0.821 0.067 0.906

Swy | 7.57-10° | 0.02-10° | 2.80-10° | 0.14-10° | 7.50-10°
Caw 3.18-1073 [ 0.51-1073 | 2.34-1073 | 0.22-1073 | 1.06 - 107°
rd 0.876 0.080 0.822 0.067 0.940

Table 4.1: Values of some measures computed on the Telegram network and on 10
simulations of the unconstrained and constrained model.

strained case, the language assortativity results are the same. In Figures [4.6 and
[4.7] it is possible to see that the model recreates both assortativity and heterogeneity
resembling the data from Telegram.

With both the constrained and unconstrained models, the IETs distribution
shows an additional regime before 10 seconds which was present also in Telegram
plots. This new regime is caused by the fact that p(7) of state A is lower than the
one of B, and before 7 = 10 the two functions intersect. It is possible to check this
by looking at Figure 4.2 Correlation is correctly reproduced thanks to the memory
function, however, both models, especially the constrained one, fail to reproduce
the longer part of the tail of p(£). This is due to the problem in reproducing
correctly the in-strength. In the constrained model simulations, the number of total
events is much lower than in Telegram, thus every chat forwards less messages which
implies an intrinsic reduction of the maximum size of every burst train. The same
happens for the unconstrained, where the total number of events is similar to the
Telegram case, but fails to reproduce the in-strength distribution. In particular, the
maximum in-strength of the chats in the unconstrained simulations is of the order of
10%, while in Telegram the maximum is of the order of 10°. This, clearly, influences
the maximum size that burst trains can have.

By examining Definition [2.4.12] it is possible to note that the in and out-strength
influence the value of Cy, too, as the weights are normalized by a larger value in
Telegram compared to the simulations data. This may explain the higher values of
Cap in both models.

Finally, the reinforcement process is present in the simulated data as was ex-
pected by the definition of the topological model.

Both models are able to reproduce the majority of the Telegram properties, from
static network measures to timing. At the same time, they fail to reproduce exactly
every aspect, in particular, the clustering in the directed case, the in-strength and
the number of total events. Nonetheless, the approach presented looks promising and
for future works it may be possible to investigate which aspects are to be modified
in order to recreate every tendency.
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CHAPTER 5

Conclusion

Throughout this thesis, the phenomenon of forwards on Telegram has been deeply
studied. To better understand the mechanisms behind it, network science has been
deployed to capture the relationship between chats. At the same time, to produce a
complete analysis, temporal aspects have been considered too. Telegram shows sim-
ilar properties to other human temporal networks. It has been shown the presence
of small-world dynamics, language assortativity and the tendency to reinforce old
ties. Chats aggregate into communities based on the languages spoken, with groups
typically forming around languages from specific geographical regions, such as Cen-
tral Europe, Russian and Ukrainian-speaking areas, or Persian speaking regions.
Interestingly, analyzing the network structure in different time windows, it features
the same properties, thus we can conclude that the network is stationary with re-
spect to its age. Regarding the timings of forwards, time sequences are bursty and
correlated. Bursty trains of events are shown to be generated by a memory process.
Furthermore, after performing a deseasoning of the time series, we have seen that
the causes of these behaviours are not daily patterns.

From the results of the analyses, two models have been developed: unconstrained
and constrained. These models are composed of two parts. One models the timing
at which each chat forwards a message, while the other simulates from which chat
the forward is made. The temporal and topological components are inspired by the
models presented in [21] and in [22], adapted to successfully recreate Telegram’s
mechanisms. Both the unconstrained and the constrained models show promising
results being able to reproduce the majority of the features of the social media. The
second one was introduced to solve the in-strength problems of the unconstrained
one, but it failed to reproduce the total number of events performed. Even if the
models are not perfect in reproducing Telegram data, they are able to capture the
majority of specific patterns seen in the social media. This suggests that the mecha-
nisms on which the models are based, such as triadic and focal closure, reinforcement
of old ties, language homophily and burst trains memory, are indeed driving forces
of the forwarding phenomenon.

Future works may start from the structure of the models proposed in this thesis
and test new aspects to introduce to obtain, for instance, an in-strength distribution
more similar to the Telegram one. Then, these models can be used to study diffusion
processes on the Telegram network with the freedom of varying the number of chats,
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the time window and the parameters to discover factors that may facilitate or not the
spreading. For instance, a study regarding misinformation can be made on top of the
simulations. As done in [§], the authors tested the effects of mitigation strategies for
disinformation on networks generated by known models and on real-world networks
too. Moreover, another aspect that can be introduced is content recognition of the
messages sent in a chat, to retrieve the topic of discussion of each channel. In this
thesis indeed, the content has not been taken into account, however, as done for
languages, it may be interesting to study whether chats aggregate into communities
based on the topic they discuss. Another direction could be to study whether the
structure of the network or the temporal dynamics change with respect to the main
topic of the channels.
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